JPH01252389A - Manipulator and its control method - Google Patents
Manipulator and its control methodInfo
- Publication number
- JPH01252389A JPH01252389A JP63080079A JP8007988A JPH01252389A JP H01252389 A JPH01252389 A JP H01252389A JP 63080079 A JP63080079 A JP 63080079A JP 8007988 A JP8007988 A JP 8007988A JP H01252389 A JPH01252389 A JP H01252389A
- Authority
- JP
- Japan
- Prior art keywords
- joints
- manipulator
- joint
- actuators
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000001133 acceleration Effects 0.000 claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0004—Braking devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
- B25J9/041—Cylindrical coordinate type
- B25J9/042—Cylindrical coordinate type comprising an articulated arm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S700/00—Data processing: generic control systems or specific applications
- Y10S700/90—Special robot structural element
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
E産業上の利用分野1
この発明はn自由度のマニピュレータアームの位置制御
をするだめの技術に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 This invention relates to a technique for controlling the position of a manipulator arm with n degrees of freedom.
人聞の手作業代行のため、多自由度のリンクからなるア
ームを有するロボットが[71発され、人間の行う巧み
な動作を実現するため、位置制御が1j4^われている
。To replace human manual labor, a robot with an arm consisting of links with multiple degrees of freedom has been launched, and its position is controlled 1j4 in order to realize the skillful movements performed by humans.
[従来の技術]
マニピュレータの最も基本的なハードウェア上の構成は
、リンク機構の各関節に対しその関節を駆動する1個の
アクチュエータとその関節の回転マニピュレータは通常
各関節ぐ実tf的に独立の位置決め能力を持ら、マニピ
ュレータの自由1衰と7クチユエータの個数は一致する
。自由度の数に比べて、アクブ」■−タの数を減すこと
を目的としCアクチュエータ数より多い自由度を制御り
゛る種々のf法が提案されているが、差動機構と対鍮物
の拘束による方法や、関節間に0J力伝達機構を設ける
方法等、機構に依存するbのが中心である。[Prior Art] The most basic hardware configuration of a manipulator is one actuator for driving each joint of a link mechanism and a rotation manipulator for that joint, each of which is usually independent in terms of tf. It has a positioning ability of 1, and the number of free manipulators equals 1 and 7 cutuators. Various f-methods have been proposed to control more degrees of freedom than the number of actuators, with the aim of reducing the number of actuators compared to the number of degrees of freedom. The main method is b, which depends on the mechanism, such as a method using brass restraints or a method that provides a 0J force transmission mechanism between joints.
[発明が解決しようとする課題]
しかし、機構に依存する上記従来の方法はマニピュレー
タの構造を複雑にし、これにともなって、1llli格
が高価になりかつマニピュレータのΦmを大きくするの
で、大きな駆動1ネルギーを必要とりる。[Problems to be Solved by the Invention] However, the above conventional method that relies on a mechanism complicates the structure of the manipulator, and as a result, the 1lli scale becomes expensive and the Φm of the manipulator becomes large. It takes energy.
このようなことからマニピュレータ関節のアクチュエー
タ類を減少さけ、大幅なコスト・ダウンを可能にし、ま
た関節を軽量化することがnl能であり、アクチュエー
タの小型化、省1ネルギー化を可能とt、Hニビ・レー
タ及びその制御す法を提供することを目的とするもので
ある。For this reason, it is possible to avoid reducing the number of actuators in the manipulator joints, which makes it possible to significantly reduce costs, and also to reduce the weight of the joints, making it possible to downsize the actuators and save energy. The object of the present invention is to provide an H nibi rate and a method for controlling it.
[発明が解決しようとする課題]
以下では関節を回転関節として述べるが、直動関節につ
いても全く同様に適用できる。[Problems to be Solved by the Invention] In the following, joints will be described as rotary joints, but the invention can be applied in exactly the same way to prismatic joints.
この目的に対応して、この発明のマニピュレータtユ、
n自由度のマニピュレータであって、n個の関節部を有
し、前配置個の関節部のうちのk個の関節部にアクチュ
エータを備え、残りn−に個(k≧n−k)の関節部に
保持ブレーキを備えていることを特徴としている。Corresponding to this purpose, the manipulator of the present invention,
A manipulator with n degrees of freedom, having n joints, k of the joints disposed at the front, k joints equipped with actuators, and the remaining n- joints with actuators (k≧n-k). It is characterized by a holding brake at the joint.
また、この発明のマニピュレータの制御7J法は、n自
由度のマニピュレータであって、n個の関節部を有し、
前記n個の関節部のうちのに個の関節部にアクチュエー
タを備え、残りn−に個(k≧n−k)の関節部に保持
プレー4二を備えるマニピュレータの操縦方法であって
、前記保持ブレーキを解放した状態では関節間の動的干
渉によりアクチュエータを有する関節の1〜ルクまたは
力によって関節を有しない、蕾に角加速度また1ま加速
度を発生させて前記アクチュエータを有しない関節の角
度また1i変位をM fill L、、前記保持ブレー
キを作動した状態ではアクチュエータを右する関節の角
度または変位を前記アクチ1■−タにより制allする
ことを特徴としている。Further, the 7J method for controlling a manipulator of the present invention is a manipulator with n degrees of freedom, having n joints,
A method for operating a manipulator, comprising actuators in n joints among the n joints, and holding plays 42 in the remaining n- joints (k≧n-k), the method comprising: When the holding brake is released, the dynamic interference between the joints causes an angular acceleration or an acceleration to be generated in the bud that does not have a joint by the force or force of the joint that has an actuator, and the angle of the joint that does not have the actuator is generated. The actuator is also characterized in that when the holding brake is activated, the angle or displacement of the joint to the right of the actuator is controlled by the actuator.
1作用1
この発明のマニピュレータ及びマニピュレータの制御り
法では、k個のアクチュエータのトルクによって保持プ
レー4を解放した状態で保持ブレーキのみの(n−k)
個の関節を含むに個の関節の角度を制御し、保持ブレー
キを駆動さUた状態で残りの(n−k )個の関節の角
度を制御し、これによってマニピ」レータのf先を(f
怠の点から任意の点に移動させることができる。1 Effect 1 In the manipulator and manipulator control method of the present invention, when the holding plate 4 is released by the torque of the k actuators, the holding brake alone (n-k) is
The angles of the remaining (n-k) joints are controlled by controlling the angles of the remaining (n-k) joints, including the holding brake, and thereby the f tip of the manipulator is set to ( f
It can be moved from the idle point to any point.
[実施例]
以下、この発明の詳細を一実施例を示す図面について説
明する。[Example] Hereinafter, details of the present invention will be explained with reference to drawings showing an example.
形性・干渉性は各関節上に構成された1ノ一ボ機構に対
して外乱としで働く。この外乱トルクを補償することが
マニピュレータの制御にお6ノる主要な問題の一つとな
っている。ところが外乱トルクが発生するということは
、他の関節の運動によって、イれ自身はトルク発生能力
を持たない1′!1節の運動を引き起こすことができる
ということでもある。Shape and interference act as disturbances to the one-in-one mechanism constructed on each joint. Compensating for this disturbance torque is one of the major problems in manipulator control. However, the disturbance torque is generated by the movement of other joints, which means that it itself does not have the ability to generate torque1'! It also means that it can cause movement in one section.
この発明はアクチ1工二りを持たない受動関節を有する
マニピュレータを、このような動力学的干渉性を利用し
て制御する技術に関するものCある。The present invention relates to a technique for controlling a manipulator having a passive joint without an actuator by utilizing such dynamic coherence.
まず、原理を説明する。First, the principle will be explained.
第1図において、1はマニピュレータである。In FIG. 1, 1 is a manipulator.
マニピュレーターは複数のリンクΩ(fl、 、 A2
・・・Ω )を関節C(C4,C2・・・Co)で連結
したn自由度をなしている。先端のリンクΩ。はハンド
2となっている。複数の関節C(C,〜Co)のうち、
任意のに個の関節C(C,・・・co−2゜C)にはア
クチュエータA (A、・・・Aj・・・八k)C(C
2・C141−Co、)には保持ブレーキ−8(+31
・・・Bo−k)が備えられている。The manipulator has multiple links Ω(fl, , A2
...Ω) connected by joints C (C4, C2...Co), forming n degrees of freedom. Tip link Ω. is hand 2. Among the multiple joints C (C, ~Co),
For any number of joints C (C, . . . co-2°C), actuators A (A, . . . Aj . . . 8k) C (C
2.C141-Co,) has a holding brake of -8 (+31
...Bo-k) is provided.
アクチュエータAはそれぞれ隣り合うリンクを駆動して
相対位置、相対角速度、相対角加速Ifを制御可能であ
る。The actuators A can control relative positions, relative angular velocities, and relative angular accelerations If by driving adjacent links.
保持ブレーキBはそれぞれ隣り合うリンクの動きを制御
、解放可能である。Each holding brake B can control and release the movement of adjacent links.
ここでの制御対象をn自由度のマニピュレータとする。The controlled object here is a manipulator with n degrees of freedom.
そのうj5k(≧n/2)自由唯の関節Cは通常のマニ
ピュレータ同様、アクヂコ■−タΔとセン9′(図示せ
ず>r構成される能動関節とし、残りn−に自由度はア
クヂュ■−夕を持たず、保持ブレーキBとセンltのみ
からなる受動関節とする。In addition, the only joint C with j5k (≧n/2) freedom is an active joint composed of Akujiko ■ -ta Δ and Sen9' (not shown) > r, as in a normal manipulator, and the remaining n- degrees of freedom are - It is a passive joint consisting only of the holding brake B and the sensor lt without having a joint.
保持ブレーキONの状態では受動関節は動かないため、
通常のマニピユレータと同じ方法に」:り能動関節がM
fillできる。また保持ブレーキOFFの状態では
受動関節は自由に回転するため、能動111flflを
仙かりことにより発生する干渉トルクで間接的1受動n
uiカ制tlll ’Q キロ −L、 h ラ2.:
、p>、rl tit’モードの組合せによりマニピユ
レータを任意の位置から任意の位置に移すFTP制御を
考える。Since the passive joint does not move when the holding brake is ON,
In the same way as a normal manipulator: the active joint is M
You can fill it. In addition, when the holding brake is OFF, the passive joint rotates freely, so the interference torque generated by the active 111flfl causes indirect 1 passive n
ui ka system tllll 'Q km -L, h la 2. :
, p>, rl tit' Consider FTP control in which a manipulator is moved from an arbitrary position to an arbitrary position by a combination of modes.
マニピュレータの運動方程式は次のように表わすことが
できる。The equation of motion of the manipulator can be expressed as follows.
M(Q)句十h (Q、へ)+rQ十〇(q)−τ・・
・(1)
但しqは関節角、τは関節トルク、M(q)は慣性行列
、h (q、ψ)は]リオリ・遠心ツバ[は粘性rIJ
擦行列、0(q)はΦカを表わす。M (Q) phrase 10h (Q, to) + rQ 10 (q) - τ...
・(1) However, q is the joint angle, τ is the joint torque, M(q) is the inertia matrix, h (q, ψ) is] Rioli centrifugal collar [is the viscosity rIJ
The friction matrix 0(q) represents Φ power.
保持ブレーキOFFの場合、受動関節のトルクはぜ口で
あるから、
τ−(τ 、τ 、・・・、τに、0.・・・、0)=
((τ’)’、0)t ・・・(2)(注:
ベクトルで、q等の要素1i必ずしも関節の幾何学順序
通りに並んで・いない。)
(1)のq、伯に各関節でセン(すでπ1測された現在
値を代入すると、h (q、l +r匂ト0(Q)は値
を求めることが゛(゛きて定数項となる。またM(Q)
も定数行列となって(1)はτと1に関する連立1次方
程式とみなすことができる。ここ7.、、Fqの要素の
うも受動関節をケベて含むに個を選んで目標値ψ−(φ
、・・・、ψ8) を与える。まだ残りのn −に個
をψ−(φ 、・・・、φ。−1どおき、慣性行列M(
Q)のそれぞれに対応りる部分を
Ml (Q)、M2 (q)とすると(1)は、Ml
(q)ψ−+h (Q、q) ト1+g ((1)−τ
−M2(Q)φ
−Ax ・・・(3
)但し
行列へが正則へらば(3)は解くことができ、x=A
(Ml (q)ψ十h (q、φ)+[向上〇 (
q) 3 ・・・(4)!J’ /j
わ朽アクチュ■−タトルクτ′及び目標(偵を与えられ
なかった関節の角加速1qφが求められる。When the holding brake is OFF, the torque of the passive joint is a gap, so τ-(τ, τ,..., τ, 0...., 0) =
((τ')', 0)t...(2)(Note:
In a vector, elements 1i such as q are not necessarily arranged in the geometric order of the joints. ) Substituting the current value measured by π1 at each joint into q and square in (1), it is possible to find the value of h (q, l + r). Also, M(Q)
is also a constant matrix, and (1) can be regarded as a simultaneous linear equation regarding τ and 1. Here 7. ,, select the elements of Fq including the passive joints and set the target value ψ−(φ
, ..., ψ8) is given. We still add pieces to the remaining n − by ψ−(φ , ..., φ.−1, and inertia matrix M(
Let the parts corresponding to Q) be Ml (Q) and M2 (q), then (1) is Ml
(q)ψ−+h (Q, q) t1+g ((1)−τ
−M2(Q)φ −Ax ...(3
) However, if the matrix is regular, then (3) can be solved, and x=A
(Ml (q) ψ tenh (q, φ) + [improvement〇 (
q) 3...(4)! J' /j
The rotating actuator torque τ' and the target (angular acceleration 1qφ of the joint for which no torque was given) are determined.
結局、k個の能動関節のトルクによってn−に個の受動
関節を含むに個の関節の角加速度を制御1yることがで
きる。As a result, the angular accelerations of the k joints, including the n- passive joints, can be controlled by the torques of the k active joints.
〈制御アルゴリズム〉
PTPl+1IIO’lエルW合、第2図、fll及び
第4図に示すように、軌道を次の3つの区間にわける。<Control algorithm> As shown in FIG. 2, fl1, and FIG. 4, the trajectory is divided into the following three sections.
■、起動区間(0<t<T1.保持プレー4−ON)■
、解放区間(T 1< t < T 2 。■, Starting section (0<t<T1. Holding play 4-ON)■
, release interval (T 1 < t < T 2 .
保持プレー1=OFF)
■、減速区間(T 2 < t < 73゜保持ブレー
キON)
このうらHの区間において受!IJl!1節を含むに個
の関節を目標軌道に沿って動かし、T、l[[の区間に
おいて残りの関節を初期位置から目標位置まで動かす。Holding play 1 = OFF) ■, Deceleration section (T 2 < t < 73° Holding brake ON) Receive in this back H section! IJl! The joints including one node are moved along the target trajectory, and the remaining joints are moved from the initial position to the target position in the interval T, l[[.
■の区間にお1)る軌道とアクチュエータ出力は次のよ
うに決定される。The trajectory and actuator output in section 1) are determined as follows.
■受動関節をすべて含むに個の関節に対し■におTy捧
角度ψ、角速度φ、角加速度ψの軌道を与え;□、、、
、:、+:
る。(10シ境界条件としてt=T、、■、においてψ
−〇)
■残りn−に個の関節について、角麿ψ、角速InΦの
t=T1における値を与える。■Give a trajectory of Ty dedicated angle ψ, angular velocity φ, and angular acceleration ψ to ■ for each joint including all passive joints; □,,,
, :, +: Ru. (At t=T, , ■, ψ as a boundary condition of 10
-0) (2) For the remaining n- joints, give the values of the angle ψ and the angular velocity InΦ at t=T1.
■t=T1において(4)の計0を行い、アクテコ1−
タトルクτ′及び角加速度φを求める。■ At t=T1, perform the total 0 of (4) and actuate 1-
Determine torque τ' and angular acceleration φ.
■数値積分により次のリンブリング時刻における角速瓜
Φ、角1qφを求める。■ Find the angular velocity Φ and angle 1qφ at the next limbing time by numerical integration.
■((4)の計tフ→数値積分lを反復し、■の全区I
J!iにわたってアクチュエータトルクτ′及び角加速
度q、角速1哀内、角度qを決定する。■(Repeat the total tf → numerical integration l of (4), and all sections I of ■
J! Actuator torque τ', angular acceleration q, angular velocity 1, and angle q are determined over i.
制御を実行する際には次のようなフィードバック則を用
いる。■゛C与える角度、角速度、角加速度の目標値を
それぞれψ4.ψ0.ψ、とする。When performing control, the following feedback law is used. ■ Set the target values of the angle, angular velocity, and angular acceleration given by ψ4. ψ0. Let ψ be.
またセンサで計測された角度、角速度をψ、ψとする。Also, let ψ and ψ be the angle and angular velocity measured by the sensor.
ψ−ψ 十ζω。(ψ、−φ)
十ω (ψd−φ) ・・・(5)と
おき、この角加速度ψをアルゴリズムの■へ・■で用ツ
コ
I、I[lの区間におけるφの制御は通常のマニピュレ
ータと同一である。■の区間においては初期位置から■
で与える角度、角速度を目標値と4゛る制御を行う。ま
た■の区間においては目標位置においてφ=0を目標値
とする制御を行う。ψ−ψ tenζω. (ψ, −φ) 10ω (ψd−φ) ...(5), this angular acceleration ψ is used in the algorithm's Same as manipulator. In the section of ■, from the initial position■
Control is performed using the angle and angular velocity given by 4 as the target value. Further, in the section (■), control is performed to set φ=0 as the target value at the target position.
以上のアルゴリズムによりマニピュレータの関節角qを
任意の初期位置から任意の目標位置まで動かすことがで
きる。The above algorithm allows the joint angle q of the manipulator to be moved from an arbitrary initial position to an arbitrary target position.
[発明の効果J
この発明では関節で連続したリンクをhするマニピュレ
ータにおいで、rJ[]節間の動力学的干渉を利用して
アクチュエータを有するfl!節のトルクによってアク
チュエータを有しない関節に角加速度を発生させて角度
を制御するので、アクチュエータを右しない関節を伝達
機構を要Uず駆動することができ、マニピュレータ関節
の7クチ」エータ数を減すことができる。したがってマ
ニビル−タの構造が的中になり小型化、省エネルギー化
を86′:8“” 9P7[Effect of the Invention J] In this invention, in a manipulator that creates continuous links at joints, fl! has an actuator that utilizes dynamic interference between rJ[] nodes. Since the angle is controlled by generating angular acceleration in the joint that does not have an actuator using the torque of the joint, it is possible to drive the joint that does not have an actuator without the need for a transmission mechanism, reducing the number of 7" actuators in the manipulator joint. can be done. Therefore, the structure of the manibuilter is on point, making it more compact and energy efficient.86':8''9P7
第1図はこの発明のマニピ」レータを示す正面説明図、
第2図1.tマニピュレータの運動を示す説明図、第3
図は¥lff1Mの角1q線図、及び第4図は質ωMの
角速度線図である。
1・・・マニピュレータ
A (A1〜Ak)・・・アクチュー[−タ8 (81
〜Bo−k) ・・・保持ブレーキC(C,〜Co)・
・・関節
′1図
第4図本
自
第2図
(n・2め積令)
I ■ ■FIG. 1 is an explanatory front view showing the manipulator of the present invention;
Figure 2 1. t Explanatory diagram showing the movement of the manipulator, 3rd
The figure is an angle 1q diagram of ¥lff1M, and FIG. 4 is an angular velocity diagram of quality ωM. 1... Manipulator A (A1~Ak)... Actuator [-ta 8 (81
~Bo-k) ...Holding brake C (C, ~Co)・
...Joint '1 Figure 4 Book's Figure 2 (n/2nd order) I ■ ■
Claims (2)
部を有し、前記n個の関節部のうちのk個の関節部にア
クチュエータを備え、残りn−k個(k≧n−k)の関
節部に保持ブレーキを備えていることを特徴とするマニ
ピュレータ(1) A manipulator with n degrees of freedom, having n joints, k joints among the n joints having actuators, and the remaining n-k joints (k≧n- k) A manipulator characterized in that the joint part is equipped with a holding brake.
部を有し、前記n個の関節部のうちのk個の関節部にア
クチュエータを備え、残りn−k個(k≧n−k)の関
節部に保持ブレーキを備えるマニピュレータの操縦方法
であつて、前記保持ブレーキを解放した状態では関節間
の動的干渉によりアクチュエータを有する関節のトルク
または力によつて関節を有しない関節に角加速度または
加速度を発生させて前記アクチュエータを有しない関節
の角度または変位を制御し、前記保持ブレーキを作動し
た状態ではアクチュエータを有する関節の角度または変
位を前記アクチュエータにより制御することを特徴とす
るマニピュレータの制御方法(2) A manipulator with n degrees of freedom, having n joints, k of the n joints having actuators, and the remaining n-k (k≧n- k) A method of operating a manipulator having a holding brake on the joint, wherein when the holding brake is released, dynamic interference between the joints causes the torque or force of the joint with the actuator to act on the joint without the joint. A manipulator that generates angular acceleration or acceleration to control the angle or displacement of the joint that does not have the actuator, and that when the holding brake is activated, the angle or displacement of the joint that has the actuator is controlled by the actuator. control method
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63080079A JPH01252389A (en) | 1988-03-31 | 1988-03-31 | Manipulator and its control method |
US07/325,926 US4928047A (en) | 1988-03-31 | 1989-03-20 | Manipulator and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63080079A JPH01252389A (en) | 1988-03-31 | 1988-03-31 | Manipulator and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01252389A true JPH01252389A (en) | 1989-10-09 |
JPH0532197B2 JPH0532197B2 (en) | 1993-05-14 |
Family
ID=13708210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63080079A Granted JPH01252389A (en) | 1988-03-31 | 1988-03-31 | Manipulator and its control method |
Country Status (2)
Country | Link |
---|---|
US (1) | US4928047A (en) |
JP (1) | JPH01252389A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110238817A (en) * | 2019-06-20 | 2019-09-17 | 中山市煜豹智能设备有限公司 | Six-axis robot |
CN112743541A (en) * | 2020-12-21 | 2021-05-04 | 南京埃斯顿自动化股份有限公司 | Soft floating control method for mechanical arm of powerless/torque sensor |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02178708A (en) * | 1988-12-28 | 1990-07-11 | Fanuc Ltd | Brake control system for gravity axis |
JPH03178788A (en) * | 1989-12-06 | 1991-08-02 | Hitachi Ltd | Control method for manipulator |
US5377310A (en) * | 1992-04-03 | 1994-12-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlling under-actuated robot arms using a high speed dynamics |
US5704253A (en) * | 1995-03-09 | 1998-01-06 | Georgia Tech Research Corporation | Trajectory guidance apparatus and method |
US5710870A (en) * | 1995-09-07 | 1998-01-20 | California Institute Of Technology | Decoupled six degree-of-freedom robot manipulator |
US6639581B1 (en) * | 1995-11-17 | 2003-10-28 | Immersion Corporation | Flexure mechanism for interface device |
JPH106273A (en) * | 1996-06-20 | 1998-01-13 | Matsushita Electric Ind Co Ltd | Industrial robot |
US6016385A (en) * | 1997-08-11 | 2000-01-18 | Fanu America Corp | Real time remotely controlled robot |
US6750900B1 (en) * | 1998-07-23 | 2004-06-15 | Eastman Kodak Company | Method and apparatus for computing motion tracking parameters |
JP3873717B2 (en) * | 2001-11-09 | 2007-01-24 | ソニー株式会社 | Positive electrode material and battery using the same |
DE10223670A1 (en) * | 2002-05-28 | 2003-12-18 | Kuka Roboter Gmbh | Method and device for moving a handling system |
US20080028880A1 (en) * | 2006-08-01 | 2008-02-07 | Asada H Harry | Gravity driven underactuated robot arm for assembly operations inside an aircraft wing box |
US7900333B2 (en) * | 2007-04-26 | 2011-03-08 | The Boeing Company | Sealing bladderless system and method |
DE102007055119B4 (en) * | 2007-11-19 | 2016-04-28 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Robot with variably arranged tool |
JP2011119556A (en) * | 2009-12-07 | 2011-06-16 | Yaskawa Electric Corp | Horizontal multi-joint robot and transportation apparatus including the same |
DE202010008424U1 (en) * | 2010-09-01 | 2011-12-06 | Zasche Sitec Handling Gmbh | handling device |
DE102012003479A1 (en) * | 2012-02-21 | 2013-08-22 | Kuka Roboter Gmbh | Method and device for carrying out a manipulator process |
JP5746308B2 (en) * | 2013-11-26 | 2015-07-08 | ファナック株式会社 | Servo control device with a function to reduce the brake fall amount |
DE102013020697B4 (en) * | 2013-12-04 | 2023-07-06 | Kuka Roboter Gmbh | Method and control means for controlling a robot |
CN105848999A (en) * | 2013-12-26 | 2016-08-10 | 空中客车公司 | Aircraft part with robot arm |
JP7150413B2 (en) * | 2014-03-17 | 2022-10-11 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for separating clutch operation in articulated arms |
US10405944B2 (en) * | 2014-10-27 | 2019-09-10 | Intuitive Surgical Operations, Inc. | Medical device with active brake release control |
WO2016069648A1 (en) | 2014-10-27 | 2016-05-06 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table |
EP3912610B1 (en) | 2014-10-27 | 2023-03-15 | Intuitive Surgical Operations, Inc. | System for registering to a surgical table |
WO2016069650A1 (en) | 2014-10-27 | 2016-05-06 | Intuitive Surgical Operations, Inc. | System and method for integrated surgical table icons |
CN111358652B (en) | 2014-10-27 | 2022-08-16 | 直观外科手术操作公司 | System and method for integrated surgical table motion |
CN111839731B (en) | 2014-10-27 | 2024-09-10 | 直观外科手术操作公司 | System and method for monitoring control points during reactive movement |
CN115444567A (en) | 2014-10-27 | 2022-12-09 | 直观外科手术操作公司 | Systems and methods for instrument interference compensation |
CN106607656A (en) * | 2016-11-28 | 2017-05-03 | 广西大学 | Variable-degree-of-freedom multi-connecting rod welding mechanical arm driven by double servo motors |
CN106607929A (en) * | 2016-11-28 | 2017-05-03 | 广西大学 | Double servo drive variable freedom degree multi-rod type mechanical arm used for assembling work |
CN106695876A (en) * | 2016-12-05 | 2017-05-24 | 广西大学 | Dual servo drive variable-freedom-degree multi-rod type mechanical arm for handling operation |
CN106608530A (en) * | 2016-12-05 | 2017-05-03 | 广西大学 | Servo drive type variable-freedom-degree-linkage-mechanism mechanical arm for carrying operation |
JP1612766S (en) * | 2018-03-29 | 2018-09-03 | ||
USD892881S1 (en) * | 2018-03-29 | 2020-08-11 | Daihen Corporation | Power transmission unit and power receiving unit of an industrial robot arm |
JP1612908S (en) * | 2018-03-29 | 2018-09-03 | ||
JP1619125S (en) * | 2018-03-29 | 2018-11-26 | ||
JP1612912S (en) * | 2018-03-29 | 2018-09-03 | ||
CN108656112B (en) * | 2018-05-15 | 2022-02-25 | 清华大学深圳研究生院 | Mechanical arm zero-force control experiment system for direct teaching |
CN109849052B (en) * | 2018-12-20 | 2021-11-02 | 江苏集萃智能制造技术研究所有限公司 | A robot joint compliant shutdown method |
US12214488B2 (en) * | 2019-09-03 | 2025-02-04 | Shanghai Flexiv Robotics Technology Co., Ltd. | Robotic arm and robot |
CN113370218B (en) * | 2021-07-06 | 2021-11-26 | 浙大城市学院 | Passive control method of flexible mechanical arm based on ionic polymer metal composite material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57168886A (en) * | 1981-04-07 | 1982-10-18 | Nissan Motor | Method of operating robot |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068156A (en) * | 1977-03-01 | 1978-01-10 | Martin Marietta Corporation | Rate control system for manipulator arms |
JPS5840761B2 (en) * | 1978-12-20 | 1983-09-07 | 工業技術院長 | Control device for human arm manipulator |
DE3046156C2 (en) * | 1980-12-06 | 1983-01-13 | Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg | Actuating device for disc brakes |
JPS57120112A (en) * | 1980-12-22 | 1982-07-27 | Fujitsu Ltd | Locus control method of arm |
JPS584377A (en) * | 1981-03-18 | 1983-01-11 | 株式会社安川電機 | Controller for articulated industrial robot |
JPS59108691A (en) * | 1982-12-13 | 1984-06-23 | 株式会社日立製作所 | Balancer control method |
DE3312862A1 (en) * | 1983-04-09 | 1984-10-11 | Blohm + Voss Ag, 2000 Hamburg | FREE PROGRAMMABLE, MULTI-AXIS ACTUATING ARM UNIT, IN PARTICULAR INDUSTRIAL ROBOTS |
US4547858A (en) * | 1983-06-13 | 1985-10-15 | Allied Corporation | Dynamic control for manipulator |
JPH0740204B2 (en) * | 1985-03-30 | 1995-05-01 | 株式会社東芝 | Controller for multi-degree-of-freedom nonlinear mechanical system |
-
1988
- 1988-03-31 JP JP63080079A patent/JPH01252389A/en active Granted
-
1989
- 1989-03-20 US US07/325,926 patent/US4928047A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57168886A (en) * | 1981-04-07 | 1982-10-18 | Nissan Motor | Method of operating robot |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110238817A (en) * | 2019-06-20 | 2019-09-17 | 中山市煜豹智能设备有限公司 | Six-axis robot |
CN112743541A (en) * | 2020-12-21 | 2021-05-04 | 南京埃斯顿自动化股份有限公司 | Soft floating control method for mechanical arm of powerless/torque sensor |
CN112743541B (en) * | 2020-12-21 | 2022-03-04 | 南京埃斯顿自动化股份有限公司 | Soft floating control method for mechanical arm of powerless/torque sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0532197B2 (en) | 1993-05-14 |
US4928047A (en) | 1990-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01252389A (en) | Manipulator and its control method | |
Hollerbach et al. | Redundancy resolution of manipulators through torque optimization | |
US4865376A (en) | Mechanical fingers for dexterity and grasping | |
Wang et al. | Passive compliance versus active compliance in robot‐based automated assembly systems | |
JP2015068502A (en) | Spherical seat coordinate control device | |
JPS61146482A (en) | Controller for different-structure different freedom-degree bilateral-master/slave-manipulator | |
Hayashibara et al. | Design of a power assist system with consideration of actuator's maximum torque | |
JPH0482688A (en) | Wire driving type multi-joint arm | |
JPS6125514B2 (en) | ||
JP4442464B2 (en) | Articulated arm mechanism | |
JP3212491B2 (en) | Direct teaching control device | |
JPS6077210A (en) | Controlling method of spatial kinetic mechanism | |
Agbaraji et al. | Dynamic modeling of a 3-DOF articulated robotic manipulator based on independent joint scheme | |
Maimon et al. | Energy analysis of robot task motions | |
Zhang et al. | Dentaltouch: A haptic display with high stiffness and low inertia | |
Arai et al. | Dynamic control of a manipulator with passive joints in an operational coordinate space. | |
Lee et al. | Dynamic analysis of tendon driven robotic mechanisms | |
JPS63267177A (en) | Master slave manipulator | |
JPH0630012B2 (en) | Control method for industrial robot | |
Gogate et al. | Formulation and control of robots with link and joint flexibility | |
JPH02262989A (en) | Manipulator and control method thereof | |
JPH02298480A (en) | Bilateral master-slave manipulator | |
JP2011143523A (en) | Multi-articulated antagonistic control manipulator | |
Tyapin et al. | Long arm manipulator path interpolation using 4th order b-splines | |
Dar-Zen et al. | Dynamic Modeling of Geared Robotic Mechanisms—The Virtual Link Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |