JPH01252389A - Manipulator and its control method - Google Patents

Manipulator and its control method

Info

Publication number
JPH01252389A
JPH01252389A JP63080079A JP8007988A JPH01252389A JP H01252389 A JPH01252389 A JP H01252389A JP 63080079 A JP63080079 A JP 63080079A JP 8007988 A JP8007988 A JP 8007988A JP H01252389 A JPH01252389 A JP H01252389A
Authority
JP
Japan
Prior art keywords
joints
manipulator
joint
actuators
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080079A
Other languages
Japanese (ja)
Other versions
JPH0532197B2 (en
Inventor
Hirohiko Arai
裕彦 荒井
Akira Tate
舘 ▲あきら▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63080079A priority Critical patent/JPH01252389A/en
Priority to US07/325,926 priority patent/US4928047A/en
Publication of JPH01252389A publication Critical patent/JPH01252389A/en
Publication of JPH0532197B2 publication Critical patent/JPH0532197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S700/00Data processing: generic control systems or specific applications
    • Y10S700/90Special robot structural element

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To reduce actuators and the like in number, and thereby make joints light in weight by providing the actuators for (k) each of the joints out of (n) each of the joints of a manipulator with (n) freedoms, and thereby providing holding brakes for (n-k) each of the joints. CONSTITUTION:(K) each of joints C out of plural numbers of the joints C (C1 through Cn) are provided with actuators A (A1 through Ak), and (n-k) each of the joints C are provided with holding brakes B (B1 through Bnk). Let an object to be controlled be a manipulator with (n) freedoms, let the joints C with (k (>=n/2)) freedoms be active joints composed of the actuators A, and let remaining (n-k) freedoms be formed by passive joints composed of the holding brakes B. The active joints can be controlled by a normal method with the holding brakes turned 'ON', and the passive joints can be indirectly controlled by torque generated by moving the active joints with the holding brakes turned 'OFF'. The combination of these two control modes enables an angular acceleration of (k) each of the joints including (n-k) each of the passive joints to be controlled by the torque of (k) each of the active joints.

Description

【発明の詳細な説明】 E産業上の利用分野1 この発明はn自由度のマニピュレータアームの位置制御
をするだめの技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 This invention relates to a technique for controlling the position of a manipulator arm with n degrees of freedom.

人聞の手作業代行のため、多自由度のリンクからなるア
ームを有するロボットが[71発され、人間の行う巧み
な動作を実現するため、位置制御が1j4^われている
To replace human manual labor, a robot with an arm consisting of links with multiple degrees of freedom has been launched, and its position is controlled 1j4 in order to realize the skillful movements performed by humans.

[従来の技術] マニピュレータの最も基本的なハードウェア上の構成は
、リンク機構の各関節に対しその関節を駆動する1個の
アクチュエータとその関節の回転マニピュレータは通常
各関節ぐ実tf的に独立の位置決め能力を持ら、マニピ
ュレータの自由1衰と7クチユエータの個数は一致する
。自由度の数に比べて、アクブ」■−タの数を減すこと
を目的としCアクチュエータ数より多い自由度を制御り
゛る種々のf法が提案されているが、差動機構と対鍮物
の拘束による方法や、関節間に0J力伝達機構を設ける
方法等、機構に依存するbのが中心である。
[Prior Art] The most basic hardware configuration of a manipulator is one actuator for driving each joint of a link mechanism and a rotation manipulator for that joint, each of which is usually independent in terms of tf. It has a positioning ability of 1, and the number of free manipulators equals 1 and 7 cutuators. Various f-methods have been proposed to control more degrees of freedom than the number of actuators, with the aim of reducing the number of actuators compared to the number of degrees of freedom. The main method is b, which depends on the mechanism, such as a method using brass restraints or a method that provides a 0J force transmission mechanism between joints.

[発明が解決しようとする課題] しかし、機構に依存する上記従来の方法はマニピュレー
タの構造を複雑にし、これにともなって、1llli格
が高価になりかつマニピュレータのΦmを大きくするの
で、大きな駆動1ネルギーを必要とりる。
[Problems to be Solved by the Invention] However, the above conventional method that relies on a mechanism complicates the structure of the manipulator, and as a result, the 1lli scale becomes expensive and the Φm of the manipulator becomes large. It takes energy.

このようなことからマニピュレータ関節のアクチュエー
タ類を減少さけ、大幅なコスト・ダウンを可能にし、ま
た関節を軽量化することがnl能であり、アクチュエー
タの小型化、省1ネルギー化を可能とt、Hニビ・レー
タ及びその制御す法を提供することを目的とするもので
ある。
For this reason, it is possible to avoid reducing the number of actuators in the manipulator joints, which makes it possible to significantly reduce costs, and also to reduce the weight of the joints, making it possible to downsize the actuators and save energy. The object of the present invention is to provide an H nibi rate and a method for controlling it.

[発明が解決しようとする課題] 以下では関節を回転関節として述べるが、直動関節につ
いても全く同様に適用できる。
[Problems to be Solved by the Invention] In the following, joints will be described as rotary joints, but the invention can be applied in exactly the same way to prismatic joints.

この目的に対応して、この発明のマニピュレータtユ、
n自由度のマニピュレータであって、n個の関節部を有
し、前配置個の関節部のうちのk個の関節部にアクチュ
エータを備え、残りn−に個(k≧n−k)の関節部に
保持ブレーキを備えていることを特徴としている。
Corresponding to this purpose, the manipulator of the present invention,
A manipulator with n degrees of freedom, having n joints, k of the joints disposed at the front, k joints equipped with actuators, and the remaining n- joints with actuators (k≧n-k). It is characterized by a holding brake at the joint.

また、この発明のマニピュレータの制御7J法は、n自
由度のマニピュレータであって、n個の関節部を有し、
前記n個の関節部のうちのに個の関節部にアクチュエー
タを備え、残りn−に個(k≧n−k)の関節部に保持
プレー4二を備えるマニピュレータの操縦方法であって
、前記保持ブレーキを解放した状態では関節間の動的干
渉によりアクチュエータを有する関節の1〜ルクまたは
力によって関節を有しない、蕾に角加速度また1ま加速
度を発生させて前記アクチュエータを有しない関節の角
度また1i変位をM fill L、、前記保持ブレー
キを作動した状態ではアクチュエータを右する関節の角
度または変位を前記アクチ1■−タにより制allする
ことを特徴としている。
Further, the 7J method for controlling a manipulator of the present invention is a manipulator with n degrees of freedom, having n joints,
A method for operating a manipulator, comprising actuators in n joints among the n joints, and holding plays 42 in the remaining n- joints (k≧n-k), the method comprising: When the holding brake is released, the dynamic interference between the joints causes an angular acceleration or an acceleration to be generated in the bud that does not have a joint by the force or force of the joint that has an actuator, and the angle of the joint that does not have the actuator is generated. The actuator is also characterized in that when the holding brake is activated, the angle or displacement of the joint to the right of the actuator is controlled by the actuator.

1作用1 この発明のマニピュレータ及びマニピュレータの制御り
法では、k個のアクチュエータのトルクによって保持プ
レー4を解放した状態で保持ブレーキのみの(n−k)
個の関節を含むに個の関節の角度を制御し、保持ブレー
キを駆動さUた状態で残りの(n−k )個の関節の角
度を制御し、これによってマニピ」レータのf先を(f
怠の点から任意の点に移動させることができる。
1 Effect 1 In the manipulator and manipulator control method of the present invention, when the holding plate 4 is released by the torque of the k actuators, the holding brake alone (n-k) is
The angles of the remaining (n-k) joints are controlled by controlling the angles of the remaining (n-k) joints, including the holding brake, and thereby the f tip of the manipulator is set to ( f
It can be moved from the idle point to any point.

[実施例] 以下、この発明の詳細を一実施例を示す図面について説
明する。
[Example] Hereinafter, details of the present invention will be explained with reference to drawings showing an example.

形性・干渉性は各関節上に構成された1ノ一ボ機構に対
して外乱としで働く。この外乱トルクを補償することが
マニピュレータの制御にお6ノる主要な問題の一つとな
っている。ところが外乱トルクが発生するということは
、他の関節の運動によって、イれ自身はトルク発生能力
を持たない1′!1節の運動を引き起こすことができる
ということでもある。
Shape and interference act as disturbances to the one-in-one mechanism constructed on each joint. Compensating for this disturbance torque is one of the major problems in manipulator control. However, the disturbance torque is generated by the movement of other joints, which means that it itself does not have the ability to generate torque1'! It also means that it can cause movement in one section.

この発明はアクチ1工二りを持たない受動関節を有する
マニピュレータを、このような動力学的干渉性を利用し
て制御する技術に関するものCある。
The present invention relates to a technique for controlling a manipulator having a passive joint without an actuator by utilizing such dynamic coherence.

まず、原理を説明する。First, the principle will be explained.

第1図において、1はマニピュレータである。In FIG. 1, 1 is a manipulator.

マニピュレーターは複数のリンクΩ(fl、 、 A2
・・・Ω )を関節C(C4,C2・・・Co)で連結
したn自由度をなしている。先端のリンクΩ。はハンド
2となっている。複数の関節C(C,〜Co)のうち、
任意のに個の関節C(C,・・・co−2゜C)にはア
クチュエータA (A、・・・Aj・・・八k)C(C
2・C141−Co、)には保持ブレーキ−8(+31
・・・Bo−k)が備えられている。
The manipulator has multiple links Ω(fl, , A2
...Ω) connected by joints C (C4, C2...Co), forming n degrees of freedom. Tip link Ω. is hand 2. Among the multiple joints C (C, ~Co),
For any number of joints C (C, . . . co-2°C), actuators A (A, . . . Aj . . . 8k) C (C
2.C141-Co,) has a holding brake of -8 (+31
...Bo-k) is provided.

アクチュエータAはそれぞれ隣り合うリンクを駆動して
相対位置、相対角速度、相対角加速Ifを制御可能であ
る。
The actuators A can control relative positions, relative angular velocities, and relative angular accelerations If by driving adjacent links.

保持ブレーキBはそれぞれ隣り合うリンクの動きを制御
、解放可能である。
Each holding brake B can control and release the movement of adjacent links.

ここでの制御対象をn自由度のマニピュレータとする。The controlled object here is a manipulator with n degrees of freedom.

そのうj5k(≧n/2)自由唯の関節Cは通常のマニ
ピュレータ同様、アクヂコ■−タΔとセン9′(図示せ
ず>r構成される能動関節とし、残りn−に自由度はア
クヂュ■−夕を持たず、保持ブレーキBとセンltのみ
からなる受動関節とする。
In addition, the only joint C with j5k (≧n/2) freedom is an active joint composed of Akujiko ■ -ta Δ and Sen9' (not shown) > r, as in a normal manipulator, and the remaining n- degrees of freedom are - It is a passive joint consisting only of the holding brake B and the sensor lt without having a joint.

保持ブレーキONの状態では受動関節は動かないため、
通常のマニピユレータと同じ方法に」:り能動関節がM
 fillできる。また保持ブレーキOFFの状態では
受動関節は自由に回転するため、能動111flflを
仙かりことにより発生する干渉トルクで間接的1受動n
uiカ制tlll ’Q キロ −L、 h ラ2.:
、p>、rl tit’モードの組合せによりマニピユ
レータを任意の位置から任意の位置に移すFTP制御を
考える。
Since the passive joint does not move when the holding brake is ON,
In the same way as a normal manipulator: the active joint is M
You can fill it. In addition, when the holding brake is OFF, the passive joint rotates freely, so the interference torque generated by the active 111flfl causes indirect 1 passive n
ui ka system tllll 'Q km -L, h la 2. :
, p>, rl tit' Consider FTP control in which a manipulator is moved from an arbitrary position to an arbitrary position by a combination of modes.

マニピュレータの運動方程式は次のように表わすことが
できる。
The equation of motion of the manipulator can be expressed as follows.

M(Q)句十h (Q、へ)+rQ十〇(q)−τ・・
・(1) 但しqは関節角、τは関節トルク、M(q)は慣性行列
、h (q、ψ)は]リオリ・遠心ツバ[は粘性rIJ
擦行列、0(q)はΦカを表わす。
M (Q) phrase 10h (Q, to) + rQ 10 (q) - τ...
・(1) However, q is the joint angle, τ is the joint torque, M(q) is the inertia matrix, h (q, ψ) is] Rioli centrifugal collar [is the viscosity rIJ
The friction matrix 0(q) represents Φ power.

保持ブレーキOFFの場合、受動関節のトルクはぜ口で
あるから、 τ−(τ 、τ 、・・・、τに、0.・・・、0)=
((τ’)’、0)t      ・・・(2)(注:
ベクトルで、q等の要素1i必ずしも関節の幾何学順序
通りに並んで・いない。) (1)のq、伯に各関節でセン(すでπ1測された現在
値を代入すると、h (q、l +r匂ト0(Q)は値
を求めることが゛(゛きて定数項となる。またM(Q)
も定数行列となって(1)はτと1に関する連立1次方
程式とみなすことができる。ここ7.、、Fqの要素の
うも受動関節をケベて含むに個を選んで目標値ψ−(φ
 、・・・、ψ8) を与える。まだ残りのn −に個
をψ−(φ 、・・・、φ。−1どおき、慣性行列M(
Q)のそれぞれに対応りる部分を Ml (Q)、M2 (q)とすると(1)は、Ml 
(q)ψ−+h (Q、q) ト1+g ((1)−τ
−M2(Q)φ −Ax                 ・・・(3
)但し 行列へが正則へらば(3)は解くことができ、x=A 
 (Ml  (q)ψ十h (q、φ)+[向上〇 (
q) 3         ・・・(4)!J’ /j
わ朽アクチュ■−タトルクτ′及び目標(偵を与えられ
なかった関節の角加速1qφが求められる。
When the holding brake is OFF, the torque of the passive joint is a gap, so τ-(τ, τ,..., τ, 0...., 0) =
((τ')', 0)t...(2)(Note:
In a vector, elements 1i such as q are not necessarily arranged in the geometric order of the joints. ) Substituting the current value measured by π1 at each joint into q and square in (1), it is possible to find the value of h (q, l + r). Also, M(Q)
is also a constant matrix, and (1) can be regarded as a simultaneous linear equation regarding τ and 1. Here 7. ,, select the elements of Fq including the passive joints and set the target value ψ−(φ
, ..., ψ8) is given. We still add pieces to the remaining n − by ψ−(φ , ..., φ.−1, and inertia matrix M(
Let the parts corresponding to Q) be Ml (Q) and M2 (q), then (1) is Ml
(q)ψ−+h (Q, q) t1+g ((1)−τ
−M2(Q)φ −Ax ...(3
) However, if the matrix is regular, then (3) can be solved, and x=A
(Ml (q) ψ tenh (q, φ) + [improvement〇 (
q) 3...(4)! J' /j
The rotating actuator torque τ' and the target (angular acceleration 1qφ of the joint for which no torque was given) are determined.

結局、k個の能動関節のトルクによってn−に個の受動
関節を含むに個の関節の角加速度を制御1yることがで
きる。
As a result, the angular accelerations of the k joints, including the n- passive joints, can be controlled by the torques of the k active joints.

〈制御アルゴリズム〉 PTPl+1IIO’lエルW合、第2図、fll及び
第4図に示すように、軌道を次の3つの区間にわける。
<Control algorithm> As shown in FIG. 2, fl1, and FIG. 4, the trajectory is divided into the following three sections.

■、起動区間(0<t<T1.保持プレー4−ON)■
、解放区間(T 1< t < T 2 。
■, Starting section (0<t<T1. Holding play 4-ON)■
, release interval (T 1 < t < T 2 .

保持プレー1=OFF) ■、減速区間(T 2 < t < 73゜保持ブレー
キON) このうらHの区間において受!IJl!1節を含むに個
の関節を目標軌道に沿って動かし、T、l[[の区間に
おいて残りの関節を初期位置から目標位置まで動かす。
Holding play 1 = OFF) ■, Deceleration section (T 2 < t < 73° Holding brake ON) Receive in this back H section! IJl! The joints including one node are moved along the target trajectory, and the remaining joints are moved from the initial position to the target position in the interval T, l[[.

■の区間にお1)る軌道とアクチュエータ出力は次のよ
うに決定される。
The trajectory and actuator output in section 1) are determined as follows.

■受動関節をすべて含むに個の関節に対し■におTy捧
角度ψ、角速度φ、角加速度ψの軌道を与え;□、、、
、:、+: る。(10シ境界条件としてt=T、、■、においてψ
−〇) ■残りn−に個の関節について、角麿ψ、角速InΦの
t=T1における値を与える。
■Give a trajectory of Ty dedicated angle ψ, angular velocity φ, and angular acceleration ψ to ■ for each joint including all passive joints; □,,,
, :, +: Ru. (At t=T, , ■, ψ as a boundary condition of 10
-0) (2) For the remaining n- joints, give the values of the angle ψ and the angular velocity InΦ at t=T1.

■t=T1において(4)の計0を行い、アクテコ1−
タトルクτ′及び角加速度φを求める。
■ At t=T1, perform the total 0 of (4) and actuate 1-
Determine torque τ' and angular acceleration φ.

■数値積分により次のリンブリング時刻における角速瓜
Φ、角1qφを求める。
■ Find the angular velocity Φ and angle 1qφ at the next limbing time by numerical integration.

■((4)の計tフ→数値積分lを反復し、■の全区I
J!iにわたってアクチュエータトルクτ′及び角加速
度q、角速1哀内、角度qを決定する。
■(Repeat the total tf → numerical integration l of (4), and all sections I of ■
J! Actuator torque τ', angular acceleration q, angular velocity 1, and angle q are determined over i.

制御を実行する際には次のようなフィードバック則を用
いる。■゛C与える角度、角速度、角加速度の目標値を
それぞれψ4.ψ0.ψ、とする。
When performing control, the following feedback law is used. ■ Set the target values of the angle, angular velocity, and angular acceleration given by ψ4. ψ0. Let ψ be.

またセンサで計測された角度、角速度をψ、ψとする。Also, let ψ and ψ be the angle and angular velocity measured by the sensor.

ψ−ψ 十ζω。(ψ、−φ) 十ω  (ψd−φ)        ・・・(5)と
おき、この角加速度ψをアルゴリズムの■へ・■で用ツ
コ I、I[lの区間におけるφの制御は通常のマニピュレ
ータと同一である。■の区間においては初期位置から■
で与える角度、角速度を目標値と4゛る制御を行う。ま
た■の区間においては目標位置においてφ=0を目標値
とする制御を行う。
ψ−ψ tenζω. (ψ, −φ) 10ω (ψd−φ) ...(5), this angular acceleration ψ is used in the algorithm's Same as manipulator. In the section of ■, from the initial position■
Control is performed using the angle and angular velocity given by 4 as the target value. Further, in the section (■), control is performed to set φ=0 as the target value at the target position.

以上のアルゴリズムによりマニピュレータの関節角qを
任意の初期位置から任意の目標位置まで動かすことがで
きる。
The above algorithm allows the joint angle q of the manipulator to be moved from an arbitrary initial position to an arbitrary target position.

[発明の効果J この発明では関節で連続したリンクをhするマニピュレ
ータにおいで、rJ[]節間の動力学的干渉を利用して
アクチュエータを有するfl!節のトルクによってアク
チュエータを有しない関節に角加速度を発生させて角度
を制御するので、アクチュエータを右しない関節を伝達
機構を要Uず駆動することができ、マニピュレータ関節
の7クチ」エータ数を減すことができる。したがってマ
ニビル−タの構造が的中になり小型化、省エネルギー化
を86′:8“” 9P7
[Effect of the Invention J] In this invention, in a manipulator that creates continuous links at joints, fl! has an actuator that utilizes dynamic interference between rJ[] nodes. Since the angle is controlled by generating angular acceleration in the joint that does not have an actuator using the torque of the joint, it is possible to drive the joint that does not have an actuator without the need for a transmission mechanism, reducing the number of 7" actuators in the manipulator joint. can be done. Therefore, the structure of the manibuilter is on point, making it more compact and energy efficient.86':8''9P7

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のマニピ」レータを示す正面説明図、
第2図1.tマニピュレータの運動を示す説明図、第3
図は¥lff1Mの角1q線図、及び第4図は質ωMの
角速度線図である。 1・・・マニピュレータ A (A1〜Ak)・・・アクチュー[−タ8 (81
〜Bo−k) ・・・保持ブレーキC(C,〜Co)・
・・関節 ′1図 第4図本 自 第2図 (n・2め積令) I      ■     ■
FIG. 1 is an explanatory front view showing the manipulator of the present invention;
Figure 2 1. t Explanatory diagram showing the movement of the manipulator, 3rd
The figure is an angle 1q diagram of ¥lff1M, and FIG. 4 is an angular velocity diagram of quality ωM. 1... Manipulator A (A1~Ak)... Actuator [-ta 8 (81
~Bo-k) ...Holding brake C (C, ~Co)・
...Joint '1 Figure 4 Book's Figure 2 (n/2nd order) I ■ ■

Claims (2)

【特許請求の範囲】[Claims] (1)n自由度のマニピュレータであって、n個の関節
部を有し、前記n個の関節部のうちのk個の関節部にア
クチュエータを備え、残りn−k個(k≧n−k)の関
節部に保持ブレーキを備えていることを特徴とするマニ
ピュレータ
(1) A manipulator with n degrees of freedom, having n joints, k joints among the n joints having actuators, and the remaining n-k joints (k≧n- k) A manipulator characterized in that the joint part is equipped with a holding brake.
(2)n自由度のマニピュレータであって、n個の関節
部を有し、前記n個の関節部のうちのk個の関節部にア
クチュエータを備え、残りn−k個(k≧n−k)の関
節部に保持ブレーキを備えるマニピュレータの操縦方法
であつて、前記保持ブレーキを解放した状態では関節間
の動的干渉によりアクチュエータを有する関節のトルク
または力によつて関節を有しない関節に角加速度または
加速度を発生させて前記アクチュエータを有しない関節
の角度または変位を制御し、前記保持ブレーキを作動し
た状態ではアクチュエータを有する関節の角度または変
位を前記アクチュエータにより制御することを特徴とす
るマニピュレータの制御方法
(2) A manipulator with n degrees of freedom, having n joints, k of the n joints having actuators, and the remaining n-k (k≧n- k) A method of operating a manipulator having a holding brake on the joint, wherein when the holding brake is released, dynamic interference between the joints causes the torque or force of the joint with the actuator to act on the joint without the joint. A manipulator that generates angular acceleration or acceleration to control the angle or displacement of the joint that does not have the actuator, and that when the holding brake is activated, the angle or displacement of the joint that has the actuator is controlled by the actuator. control method
JP63080079A 1988-03-31 1988-03-31 Manipulator and its control method Granted JPH01252389A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63080079A JPH01252389A (en) 1988-03-31 1988-03-31 Manipulator and its control method
US07/325,926 US4928047A (en) 1988-03-31 1989-03-20 Manipulator and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080079A JPH01252389A (en) 1988-03-31 1988-03-31 Manipulator and its control method

Publications (2)

Publication Number Publication Date
JPH01252389A true JPH01252389A (en) 1989-10-09
JPH0532197B2 JPH0532197B2 (en) 1993-05-14

Family

ID=13708210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080079A Granted JPH01252389A (en) 1988-03-31 1988-03-31 Manipulator and its control method

Country Status (2)

Country Link
US (1) US4928047A (en)
JP (1) JPH01252389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238817A (en) * 2019-06-20 2019-09-17 中山市煜豹智能设备有限公司 Six-axis robot
CN112743541A (en) * 2020-12-21 2021-05-04 南京埃斯顿自动化股份有限公司 Soft floating control method for mechanical arm of powerless/torque sensor

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178708A (en) * 1988-12-28 1990-07-11 Fanuc Ltd Brake control system for gravity axis
JPH03178788A (en) * 1989-12-06 1991-08-02 Hitachi Ltd Control method for manipulator
US5377310A (en) * 1992-04-03 1994-12-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlling under-actuated robot arms using a high speed dynamics
US5704253A (en) * 1995-03-09 1998-01-06 Georgia Tech Research Corporation Trajectory guidance apparatus and method
US5710870A (en) * 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
US6639581B1 (en) * 1995-11-17 2003-10-28 Immersion Corporation Flexure mechanism for interface device
JPH106273A (en) * 1996-06-20 1998-01-13 Matsushita Electric Ind Co Ltd Industrial robot
US6016385A (en) * 1997-08-11 2000-01-18 Fanu America Corp Real time remotely controlled robot
US6750900B1 (en) * 1998-07-23 2004-06-15 Eastman Kodak Company Method and apparatus for computing motion tracking parameters
JP3873717B2 (en) * 2001-11-09 2007-01-24 ソニー株式会社 Positive electrode material and battery using the same
DE10223670A1 (en) * 2002-05-28 2003-12-18 Kuka Roboter Gmbh Method and device for moving a handling system
US20080028880A1 (en) * 2006-08-01 2008-02-07 Asada H Harry Gravity driven underactuated robot arm for assembly operations inside an aircraft wing box
US7900333B2 (en) * 2007-04-26 2011-03-08 The Boeing Company Sealing bladderless system and method
DE102007055119B4 (en) * 2007-11-19 2016-04-28 Fft Edag Produktionssysteme Gmbh & Co. Kg Robot with variably arranged tool
JP2011119556A (en) * 2009-12-07 2011-06-16 Yaskawa Electric Corp Horizontal multi-joint robot and transportation apparatus including the same
DE202010008424U1 (en) * 2010-09-01 2011-12-06 Zasche Sitec Handling Gmbh handling device
DE102012003479A1 (en) * 2012-02-21 2013-08-22 Kuka Roboter Gmbh Method and device for carrying out a manipulator process
JP5746308B2 (en) * 2013-11-26 2015-07-08 ファナック株式会社 Servo control device with a function to reduce the brake fall amount
DE102013020697B4 (en) * 2013-12-04 2023-07-06 Kuka Roboter Gmbh Method and control means for controlling a robot
CN105848999A (en) * 2013-12-26 2016-08-10 空中客车公司 Aircraft part with robot arm
JP7150413B2 (en) * 2014-03-17 2022-10-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for separating clutch operation in articulated arms
US10405944B2 (en) * 2014-10-27 2019-09-10 Intuitive Surgical Operations, Inc. Medical device with active brake release control
WO2016069648A1 (en) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. System and method for integrated surgical table
EP3912610B1 (en) 2014-10-27 2023-03-15 Intuitive Surgical Operations, Inc. System for registering to a surgical table
WO2016069650A1 (en) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. System and method for integrated surgical table icons
CN111358652B (en) 2014-10-27 2022-08-16 直观外科手术操作公司 System and method for integrated surgical table motion
CN111839731B (en) 2014-10-27 2024-09-10 直观外科手术操作公司 System and method for monitoring control points during reactive movement
CN115444567A (en) 2014-10-27 2022-12-09 直观外科手术操作公司 Systems and methods for instrument interference compensation
CN106607656A (en) * 2016-11-28 2017-05-03 广西大学 Variable-degree-of-freedom multi-connecting rod welding mechanical arm driven by double servo motors
CN106607929A (en) * 2016-11-28 2017-05-03 广西大学 Double servo drive variable freedom degree multi-rod type mechanical arm used for assembling work
CN106695876A (en) * 2016-12-05 2017-05-24 广西大学 Dual servo drive variable-freedom-degree multi-rod type mechanical arm for handling operation
CN106608530A (en) * 2016-12-05 2017-05-03 广西大学 Servo drive type variable-freedom-degree-linkage-mechanism mechanical arm for carrying operation
JP1612766S (en) * 2018-03-29 2018-09-03
USD892881S1 (en) * 2018-03-29 2020-08-11 Daihen Corporation Power transmission unit and power receiving unit of an industrial robot arm
JP1612908S (en) * 2018-03-29 2018-09-03
JP1619125S (en) * 2018-03-29 2018-11-26
JP1612912S (en) * 2018-03-29 2018-09-03
CN108656112B (en) * 2018-05-15 2022-02-25 清华大学深圳研究生院 Mechanical arm zero-force control experiment system for direct teaching
CN109849052B (en) * 2018-12-20 2021-11-02 江苏集萃智能制造技术研究所有限公司 A robot joint compliant shutdown method
US12214488B2 (en) * 2019-09-03 2025-02-04 Shanghai Flexiv Robotics Technology Co., Ltd. Robotic arm and robot
CN113370218B (en) * 2021-07-06 2021-11-26 浙大城市学院 Passive control method of flexible mechanical arm based on ionic polymer metal composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168886A (en) * 1981-04-07 1982-10-18 Nissan Motor Method of operating robot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068156A (en) * 1977-03-01 1978-01-10 Martin Marietta Corporation Rate control system for manipulator arms
JPS5840761B2 (en) * 1978-12-20 1983-09-07 工業技術院長 Control device for human arm manipulator
DE3046156C2 (en) * 1980-12-06 1983-01-13 Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg Actuating device for disc brakes
JPS57120112A (en) * 1980-12-22 1982-07-27 Fujitsu Ltd Locus control method of arm
JPS584377A (en) * 1981-03-18 1983-01-11 株式会社安川電機 Controller for articulated industrial robot
JPS59108691A (en) * 1982-12-13 1984-06-23 株式会社日立製作所 Balancer control method
DE3312862A1 (en) * 1983-04-09 1984-10-11 Blohm + Voss Ag, 2000 Hamburg FREE PROGRAMMABLE, MULTI-AXIS ACTUATING ARM UNIT, IN PARTICULAR INDUSTRIAL ROBOTS
US4547858A (en) * 1983-06-13 1985-10-15 Allied Corporation Dynamic control for manipulator
JPH0740204B2 (en) * 1985-03-30 1995-05-01 株式会社東芝 Controller for multi-degree-of-freedom nonlinear mechanical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168886A (en) * 1981-04-07 1982-10-18 Nissan Motor Method of operating robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238817A (en) * 2019-06-20 2019-09-17 中山市煜豹智能设备有限公司 Six-axis robot
CN112743541A (en) * 2020-12-21 2021-05-04 南京埃斯顿自动化股份有限公司 Soft floating control method for mechanical arm of powerless/torque sensor
CN112743541B (en) * 2020-12-21 2022-03-04 南京埃斯顿自动化股份有限公司 Soft floating control method for mechanical arm of powerless/torque sensor

Also Published As

Publication number Publication date
JPH0532197B2 (en) 1993-05-14
US4928047A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
JPH01252389A (en) Manipulator and its control method
Hollerbach et al. Redundancy resolution of manipulators through torque optimization
US4865376A (en) Mechanical fingers for dexterity and grasping
Wang et al. Passive compliance versus active compliance in robot‐based automated assembly systems
JP2015068502A (en) Spherical seat coordinate control device
JPS61146482A (en) Controller for different-structure different freedom-degree bilateral-master/slave-manipulator
Hayashibara et al. Design of a power assist system with consideration of actuator's maximum torque
JPH0482688A (en) Wire driving type multi-joint arm
JPS6125514B2 (en)
JP4442464B2 (en) Articulated arm mechanism
JP3212491B2 (en) Direct teaching control device
JPS6077210A (en) Controlling method of spatial kinetic mechanism
Agbaraji et al. Dynamic modeling of a 3-DOF articulated robotic manipulator based on independent joint scheme
Maimon et al. Energy analysis of robot task motions
Zhang et al. Dentaltouch: A haptic display with high stiffness and low inertia
Arai et al. Dynamic control of a manipulator with passive joints in an operational coordinate space.
Lee et al. Dynamic analysis of tendon driven robotic mechanisms
JPS63267177A (en) Master slave manipulator
JPH0630012B2 (en) Control method for industrial robot
Gogate et al. Formulation and control of robots with link and joint flexibility
JPH02262989A (en) Manipulator and control method thereof
JPH02298480A (en) Bilateral master-slave manipulator
JP2011143523A (en) Multi-articulated antagonistic control manipulator
Tyapin et al. Long arm manipulator path interpolation using 4th order b-splines
Dar-Zen et al. Dynamic Modeling of Geared Robotic Mechanisms—The Virtual Link Approach

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term