BRPI0708030A2 - systems and methods for prioritizing mobile media player files - Google Patents
systems and methods for prioritizing mobile media player files Download PDFInfo
- Publication number
- BRPI0708030A2 BRPI0708030A2 BRPI0708030-1A BRPI0708030A BRPI0708030A2 BR PI0708030 A2 BRPI0708030 A2 BR PI0708030A2 BR PI0708030 A BRPI0708030 A BR PI0708030A BR PI0708030 A2 BRPI0708030 A2 BR PI0708030A2
- Authority
- BR
- Brazil
- Prior art keywords
- media
- playlist
- user
- items
- mobile
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 235000019640 taste Nutrition 0.000 claims abstract description 54
- 238000012986 modification Methods 0.000 claims description 11
- 230000004048 modification Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 3
- 230000014759 maintenance of location Effects 0.000 claims 2
- 238000012217 deletion Methods 0.000 abstract description 23
- 230000037430 deletion Effects 0.000 abstract description 22
- 238000007619 statistical method Methods 0.000 abstract description 3
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 24
- 239000013598 vector Substances 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 238000013459 approach Methods 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- PKOMXLRKGNITKG-UHFFFAOYSA-L calcium;hydroxy(methyl)arsinate Chemical compound [Ca+2].C[As](O)([O-])=O.C[As](O)([O-])=O PKOMXLRKGNITKG-UHFFFAOYSA-L 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B27/00—Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
- G11B27/10—Indexing; Addressing; Timing or synchronising; Measuring tape travel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1095—Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/43—Querying
- G06F16/438—Presentation of query results
- G06F16/4387—Presentation of query results by the use of playlists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B27/00—Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
- G11B27/02—Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
- G11B27/031—Electronic editing of digitised analogue information signals, e.g. audio or video signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B27/00—Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
- G11B27/02—Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
- G11B27/031—Electronic editing of digitised analogue information signals, e.g. audio or video signals
- G11B27/034—Electronic editing of digitised analogue information signals, e.g. audio or video signals on discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B27/00—Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
- G11B27/02—Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
- G11B27/031—Electronic editing of digitised analogue information signals, e.g. audio or video signals
- G11B27/036—Insert-editing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
- H04L65/612—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
- H04N21/25866—Management of end-user data
- H04N21/25891—Management of end-user data being end-user preferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/262—Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
- H04N21/26258—Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists for generating a list of items to be played back in a given order, e.g. playlist, or scheduling item distribution according to such list
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/433—Content storage operation, e.g. storage operation in response to a pause request, caching operations
- H04N21/4335—Housekeeping operations, e.g. prioritizing content for deletion because of storage space restrictions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44204—Monitoring of content usage, e.g. the number of times a movie has been viewed, copied or the amount which has been watched
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/654—Transmission by server directed to the client
- H04N21/6543—Transmission by server directed to the client for forcing some client operations, e.g. recording
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/658—Transmission by the client directed to the server
- H04N21/6582—Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/173—Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
- H04N7/17309—Transmission or handling of upstream communications
- H04N7/17318—Direct or substantially direct transmission and handling of requests
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Physics & Mathematics (AREA)
- Finance (AREA)
- General Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- General Engineering & Computer Science (AREA)
- Game Theory and Decision Science (AREA)
- Computer Graphics (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Television Signal Processing For Recording (AREA)
- Management Or Editing Of Information On Record Carriers (AREA)
- Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)
Abstract
SISTEMAS E MéTODOS PARA PRIORIZAR ARQUIVOS DE REPRODUTOR DE MìDIA MóVEL. São divulgadas modalidades de sistemas e métodos para priorizar arquivos de reprodutor de mídia móvel permitindo a adição e/ou deleção automatizada dos itens de mídia para um reprodutor de mídia móvel. Em algumas modalidades, um método estatístico pode ser fornecido para inferir quais itens de mídia em um reprodutor de mídia móvel devem ser deletados com base, por exemplo, nos dados de gosto do usuário. Em algumas modalidades, novos tens de mídia podem ser carregados em um reprodutor de mídia móvel do usuário pela criação de uma ou mais listas de execução provenientes de um construtor de lista de execução. A(s) lista(s) de execução pode(m) ser criada(s) pelo uso dos dados de gosto do usuário. Classificações também podem ser criadas para determinar uma ordem para deleção dos itens de mídia atualmente em um reprodutor de mídia móvel e/ou para adição de novos itens de mídia no dispositivo.SYSTEMS AND METHODS FOR PRIORITIZING MOBILE MEDIA PLAYER FILES. Modalities of systems and methods for prioritizing mobile media player files are disclosed allowing for the automated addition and / or deletion of media items to a mobile media player. In some modalities, a statistical method can be provided to infer which media items in a mobile media player should be deleted based, for example, on the user's taste data. In some embodiments, new media streams can be loaded into a user's mobile media player by creating one or more playlists from a playlist builder. The execution list (s) can be created using the user's taste data. Classifications can also be created to determine an order for deleting media items currently on a mobile media player and / or for adding new media items to the device.
Description
"SISTEMAS E MÉTODOS PARA PRIORIZAR ARQUIVOS DE REPRODUTOR DEMÍDIA MÓVEL""SYSTEMS AND METHODS FOR PRIORIZING MOBILE MEDIA PLAYER FILES"
DESCRIÇÃO RESUMIDA DOS DESENHOSBRIEF DESCRIPTION OF DRAWINGS
Entendendo que os desenhos representam somente certas modalidades preferidasda invenção e que, portanto, não devem ser considerados Iimitantes do seu escopo, as mo-dalidades preferidas serão descritas e explicadas com especificidade e detalhes adicionaispor meio do uso dos desenhos anexos, nos quais:Understanding that the drawings represent only certain preferred embodiments of the invention and that, therefore, should not be construed as limiting their scope, preferred embodiments will be described and explained with specificity and further detail through the use of the accompanying drawings, in which:
A Figura 1 é um fluxograma de uma modalidade de um método para a deleção au-tomatizada de itens de mídia de um reprodutor de mídia portátil.Figure 1 is a flowchart of one embodiment of a method for auto-deleting media items from a portable media player.
A Figura 2 é um fluxograma de uma implementação de um processo de computa-ção de probabilidade.Figure 2 is a flowchart of an implementation of a probability computation process.
A Figura 3 é um fluxograma de uma outra modalidade de um método para a dele-ção automatizada de itens de mídia de um reprodutor de mídia portátil.Figure 3 is a flowchart of another embodiment of a method for the automated deletion of media items from a portable media player.
A Figura 4 é um fluxograma de uma modalidade de um método para a deleção au-tomatizada dos itens de mídia de um reprodutor de mídia portátil e para a seleção e adiçãode novos itens de mídia no reprodutor.Figure 4 is a flowchart of one embodiment of a method for automatically deleting media items from a portable media player and for selecting and adding new media items to the player.
DESCRIÇÃO DETALHADA DAS MODALIDADES PREFERIDASDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Na descrição seguinte, certos detalhes específicos de programação, módulos desoftware, seleções de usuário, transações de rede, consultas de bases de dados, estruturasde bases de dados, etc. são fornecidos para um completo entendimento das modalidadespreferidas específicas da invenção. Entretanto, versados na técnica percebem que modali-dades podem ser realizadas sem um ou mais dos detalhes específicos, ou com outros mé-todos, componentes, materiais, etc.In the following description, certain specific programming details, software modules, user selections, network transactions, database queries, database structures, etc. are provided for a complete understanding of the preferred specific embodiments of the invention. However, skilled in the art realize that modalities can be performed without one or more of the specific details, or with other methods, components, materials, etc.
Em alguns casos, estruturas, materiais ou operações bem conhecidos não sãomostrados ou descritos com detalhes a fim de evitar obscurecer aspectos das modalidadespreferidas. Além do mais, os recursos, estruturas ou características descritos podem sercombinados de qualquer maneira adequada em uma variedade de modalidades alternativas.In some cases, well-known structures, materials or operations are not shown or described in detail to avoid obscuring aspects of the preferred embodiments. Furthermore, the features, structures or characteristics described may be combined in any suitable manner in a variety of alternative embodiments.
Em algumas modalidades, as metodologias e sistemas aqui descritos podem ser realizadosusando um ou mais processadores digitas, tais como os tipos de microprocessadores quesão comumente encontrados em PCs, computadores portáteis, PDAs e todas as espéciesde outros utensílios eletrônicos de mesa ou portáteis.In some embodiments, the methodologies and systems described herein may be performed using one or more digital processors, such as the types of microprocessors commonly found in PCs, laptops, PDAs, and all kinds of other desktop or portable electronics.
São divulgadas modalidades de sistemas e métodos para priorizar arquivos de re-produtor de mídia móvel. Algumas modalidades da invenção podem fornecer sistemas emétodos para a deleção automatizada de arquivos, tais como item de mídia, de um reprodu-tor de mídia móvel. Em algumas modalidades, um método estatístico pode ser fornecidopara inferir qual item de mídia em um reprodutor de mídia móvel deve ser deletado com ba-se, por exemplo, nos dados de gosto. A deleção destes arquivos fornece espaço livre paranovos itens de mídia a ser colocados no reprodutor de mídia. Um ou mais parâmetros degosto do usuário, cenários de reprodução pretendidos e/ou preferências de usuário explici-tamente especificados podem ser combinados para classificar itens da prioridade de dele-ção mais alta para a mais baixa, para satisfazer uma restrição de espaço exigida.Modalities of systems and methods for prioritizing mobile media re-producer files are disclosed. Some embodiments of the invention may provide systems and methods for the automated deletion of files, such as media item, from a mobile media player. In some embodiments, a statistical method may be provided to infer which media item in a mobile media player should be deleted based on, for example, taste data. Deleting these files provides free space for new media items to be placed in the media player. One or more explicitly specified user parameters, playback scenarios and / or user preferences may be combined to rank items from the highest to lowest deletion priority to satisfy a required space constraint.
Algumas modalidades da invenção também podem, ou podem alternativamente,fornecer métodos ou sistemas para encher um reprodutor de mídia móvel com itens de mí-dia. Em algumas modalidades, a operação de auto-enchimento pode ser automaticamenterealizada em um momento designado e/ou antes de um evento significativo, tal como noinício do dia ou antes de uma viagem. Os novos itens de mídia carregados no dispositivopodem ser selecionados para ser responsivos às preferências do gosto do usuário, em al-guns casos, influenciadas pelo evento antecipado. Os novos itens de mídia também podemser selecionados, e itens atuais no dispositivo deletado, com base, em parte, na mescla dosdados do gosto do usuário acumulados no dispositivo desde o último enchimento com histó-rico do usuário e dados do gosto da comunidade em um servidor hospedeiro do sistema.Some embodiments of the invention may also, or may alternatively, provide methods or systems for filling a mobile media player with media items. In some embodiments, the autofill operation may be automatically performed at a designated time and / or prior to a significant event, such as early in the day or prior to a trip. New media items loaded on the device may be selected to be responsive to the user's taste preferences, in some cases influenced by the anticipated event. New media items can also be selected, and current items on the deleted device, based in part on the mix of user taste data accumulated on the device since the last user history fill and community taste data in a host server of the system.
Em uma modalidade de um sistema de acordo com a invenção, um ou mais repro-dutores de mídia móveis são fornecidos. Cada reprodutor de mídia móvel é configurado parareproduzir itens de mídia em uma lista de execução de item de mídia. É fornecido um com-ponente de modificação de lista de execução que pode ser configurado para receber umalista de execução do item de mídia de um reprodutor de mídia móvel de um dado usuário,para analisar os dados do gosto do usuário associados com o reprodutor de mídia móvel, epara modificar a lista de execução do item de mídia usando os dados do gosto do usuário.Um componente de transmissão de rede também pode ser fornecido para transferir itens demídia ao reprodutor de mídia móvel e para deletar itens de mídia do reprodutor de mídiamóvel de acordo com a lista de execução do item de mídia modificado. Se desejado, a listade execução do item de mídia modificado também pode ser transferida para o reprodutor demídia móvel.In one embodiment of a system according to the invention, one or more mobile media players are provided. Each mobile media player is configured to play media items in a media item playlist. A playlist modification component is provided that can be configured to receive a media item playlist from a given user's mobile media player to analyze user taste data associated with the media player. to modify the media item playlist using user taste data. A network streaming component can also be provided to transfer media items to the mobile media player and to delete media items from the mobile media player. according to the playlist of the modified media item. If desired, the playlist of the modified media item can also be transferred to the mobile media player.
O componente de modificação de lista de execução também pode ser configuradopara classificar os itens de mídia na lista de execução do item de mídia de acordo com aanálise dos dados de gosto do usuário. Em tais modalidades, o componente de transmissãode rede também pode ser configurado para deletar itens de mídia do reprodutor de mídiamóvel de acordo com uma classificação similar. O componente de modificação da lista deexecução também pode compreender um construtor de lista de execução configurado paraconstruir uma ou mais listas de execução dos dados de gosto do usuário. O construtor delista de execução pode ser configurado para classificar os itens de mídia em pelo menosuma lista de execução dos dados do gosto do usuário. Quando os itens de mídia em umalista de execução forem assim classificados, o componente de transmissão de rede pode serconfigurado para transferir itens de mídia ao reprodutor de mídia móvel de acordo com suaclassificação. Portanto, o sistema pode classificar itens de mídia para deleção e/ou paraadição em um reprodutor de mídia móvel.The playlist modification component can also be configured to classify media items in the media item's playlist according to user taste data analysis. In such embodiments, the network broadcast component may also be configured to delete media items from the mobile player according to a similar classification. The playlist modification component can also comprise a playlist builder configured to construct one or more playlists of user taste data. The runtime builder can be configured to sort media items into at least one playlist of user-like data. When media items in a playlist are thus classified, the network broadcast component can be configured to transfer media items to the mobile media player according to its rating. Therefore, the system can classify media items for deletion and / or addition on a mobile media player.
Em algumas modalidades, o componente de modificação de lista de execução podeser adicionalmente configurado para comparar os dados de gosto do usuário com os dadosde gosto do usuário de uma sessão anterior para identificar dados de gosto do usuário modi-ficados. Então, o componente de modificação de lista de execução pode modificar a lista deexecução de item de mídia usando os dados de gosto do usuário modificados.In some embodiments, the playlist modification component may be further configured to compare user taste data with user taste data from a previous session to identify modified user taste data. Then, the playlist modification component can modify the media item playlist using the modified user taste data.
Em uma modalidade de um método de acordo com a invenção, uma lista de execu-ção de item de mídia é recebida de um reprodutor de mídia móvel. Os dados de gosto dousuário associados com um usuário do reprodutor de mídia móvel também podem ser rece-bidos e analisados. Então, uma lista de execução recomendada pode ser gerada a partir daanálise dos dados do gosto do usuário. Então, a lista de execução recomendada pode sercomparada com a lista de execução de item de mídia e modificada usando a comparaçãocom a lista de execução de item de mídia. Esta comparação e modificação podem envolver,por exemplo, remover itens de mídia da lista de execução recomendada que já estão na listade execução de item de mídia. Então, os itens de mídia na lista de execução recomendada,ou um subconjunto dos itens de mídia na lista de execução recomendada podem ser classi-ficados. Esta classificação pode compreender a ordem na qual os itens de mídia devem seressencialmente transferidos ao reprodutor de mídia móvel. Certamente, isto não significa,necessariamente, que todos os itens na lista classificada devem ser transferidos. De fatorestrições de espaço, demandas especiais de usuário, etc., podem impor que menos do quetodos os itens de mídia classificados sejam transferidos. Itens de mídia na lista de execuçãodo item de mídia também podem ser classificados na ordem na qual eles devem ser removi-dos do reprodutor de mídia móvel. Entretanto, novamente, isto não exige que todos os itensclassificados sejam removidos. Então, um ou mais itens de mídia podem ser deletados doreprodutor de mídia móvel em uma ordem de acordo com suas classificações, e um ou maisitens de mídia podem ser transferidos para o reprodutor de mídia móvel em uma ordem deacordo com suas classificações.In one embodiment of a method according to the invention, a media item playlist is received from a mobile media player. User taste data associated with a mobile media player user can also be received and analyzed. Then, a recommended playlist can be generated from user taste data analysis. Then the recommended playlist can be compared to the media item playlist and modified using the comparison with the media item playlist. This comparison and modification may involve, for example, removing media items from the recommended playlist that are already in the media item playlist. Then, the media items in the recommended playlist, or a subset of the media items in the recommended playlist, can be classified. This classification may comprise the order in which media items are to be essentially transferred to the mobile media player. Of course, this does not necessarily mean that all items in the sorted list must be transferred. Space factor factors, special user demands, etc., may require less than all classified media items to be transferred. Media Items in the Media Item Playlist can also be sorted in the order in which they are to be removed from the mobile media player. However, again, this does not require all classified items to be removed. Then one or more media items may be deleted from the mobile media player in an order according to their rating, and one or more media items may be transferred to the mobile media player in an order according to their rating.
A lista de execução do item de mídia também pode ser modificada para refletir ositens de mídia removidos do reprodutor de mídia móvel e os itens de mídia transferidos parao reprodutor de mídia móvel. Então, a lista de execução do item de mídia modificado tam-bém pode ser transferida para o reprodutor de mídia móvel.The playlist of the media item can also be modified to reflect media items removed from the mobile media player and media items transferred to the mobile media player. Then the playlist of the modified media item can also be transferred to the mobile media player.
Da forma aqui usada, um "recomendador de usuário" é um módulo integrado emuma comunidade de usuários, cuja função principal é recomendar usuários a outros usuá-rios naquela comunidade. Pode haver um conjunto de itens na comunidade para que os u-suários da comunidade interajam. Também pode haver um recomendador de item para re-comendar outros itens aos usuários. Exemplos de sistemas recomendadores que podem serusados em conjunto com as modalidades aqui apresentadas são descritos no pedido depatente US 11/346.818, intitulado "Recommender System for Identifying a New Set of MediaItems Responsive to an Input Set of Media Items and Knowledge Base Metrics", e pedido depatente US 11/048.950, intitulado "Dynamic Identification of a New Set of Media Items Res-ponsive to na Input Mediaset", ambos os quais são aqui incorporados pela referência.As used herein, a "user recommender" is an integrated module in a user community whose primary function is to recommend users to other users in that community. There may be a set of items in the community for community users to interact with. There may also be an item recommender to re-order other items to users. Examples of recommending systems that may be used in conjunction with the embodiments herein are described in US Patent Application 11 / 346,818 entitled "Recommending System for Identifying a New Set of MediaItems Responsible for an Input Set of Media Items and Knowledge Base Metrics", and patent application US 11 / 048,950, entitled "Dynamic Identification of a New Set of Media Items Responsive to the Input Mediaset", both of which are incorporated herein by reference.
Da forma aqui usada, o termo "item de dados de mídia" deve abranger qualquer i-tem de mídia ou representação de um item de mídia. Um "item de mídia" deve abrangerqualquer tipo de arquivo de mídia que pode ser representado em um formato de mídia digi-tal, tais como uma música, filme, imagem, livro eletrônico, jornal, segmento de um programade TV / rádio, jogo, etc. Assim, pretende-se que o termo "item de dados de mídia" abranja,por exemplo, arquivos do item de mídia reproduzível (por exemplo, um arquivo MP3), bemcomo metadados que identificam um arquivo de mídia reproduzível (por exemplo, metada-dos que identificam um arquivo MP3). Portanto, deve ficar aparente que em qualquer moda-lidade que fornece um processo, etapa ou sistema usando "itens de mídia", estes processo,etapa ou sistema pode usar, em substituição, uma representação de um item de mídia (taiscomo metadados), e vice-versa.As used herein, the term "media data item" shall encompass any media item or representation of a media item. A "media item" shall cover any type of media file that may be represented in a digital media format, such as a song, movie, image, eBook, newspaper, TV / radio show segment, game, etc. Thus, the term "media data item" is intended to encompass, for example, playable media item files (for example, an MP3 file), as well as metadata identifying a reproducible media file (for example, metadata). that identify an MP3 file). Therefore, it should be apparent that in any fashion that provides a process, step or system using "media items", that process, step or system may use instead a representation of a media item (such as metadata), and vice versa.
Exemplos de processos e sistemas para a remoção automatizada dos itens de mí-dia de um reprodutor de mídia móvel serão agora discutidos com mais detalhes. Tipicamen-te, a memória disponível para armazenar itens de mídia em um reprodutor de mídia móvel éum recurso limitado que deve ser gerenciado. Durante o carregamento de novos itens demídia, um usuário deve decidir freqüentemente se sobrescreve, ou de outra forma remove,itens de mídia atualmente armazenados no dispositivo para criar espaço para os novos itensde mídia. O processo para carregar novos itens de mídia pode ser acelerado e simplificadopara um usuário se cada um dos itens de mídia em um dispositivo, ou um subconjunto dositens de mídia em um dispositivo, puder ser automaticamente classificado de acordo com ointeresse do usuário atual em retê-lo. Dada a classificação, itens existentes podem ser au-tomaticamente deletados do menos desejável ao mais desejável, até que a quantidade deespaço exigida ou um limite de desejabilidade seja alcançado. Então, o espaço liberado ficadisponível para carregar novos itens de mídia. Exemplos de processos e sistemas para adi-cionar automaticamente itens de mídia em um reprodutor de mídia móvel serão discutidos aseguir.Examples of processes and systems for the automated removal of media items from a mobile media player will now be discussed in more detail. Typically, the memory available for storing media items on a mobile media player is a limited resource that must be managed. When loading new media items, a user must often decide whether to overwrite, or otherwise remove, media items currently stored on their device to make room for new media items. The process for uploading new media items can be accelerated and simplified for a user if each media item on a device, or a subset of media items on a device, can be automatically classified according to the current user's interest in retaining it. lo. Given the classification, existing items can be automatically deleted from least desirable to most desirable until the amount of space required or a limit of desirability is reached. Then, the free space is available to upload new media items. Examples of processes and systems for automatically adding media items to a mobile media player will be discussed below.
Exemplos de métodos para inferir espaço livre com base em regressão estatísticasão aqui descritos. Um modelo de regressão de exemplo para anexar uma probabilidade dedeleção a cada item no dispositivo solicitante será introduzido. Então, um método de exem-pio para estimar os parâmetros do modelo responsivo às preferências do usuário será deli-neado. Finalmente, exemplos de esquema determinístico e aleatório para deletar itens u-sando os valores de regressão estatísticos serão descritos.Inferindo "espaço livre" em um dispositivo móvel por regressão estatística:Considere que o espaço total disponível para armazenar itens de mídia em um dis-positivo móvel seja St bytes e que a memória do dispositivo inclui atualmente itens Oi1, m2,..., mN exigindo espaço:Examples of methods for inferring free space based on regression statistics are described here. An example regression model for appending a selection probability to each item on the requesting device will be introduced. Then, an example method for estimating model parameters responsive to user preferences will be outlined. Finally, examples of a deterministic and randomized scheme for deleting items using statistical regression values will be described. Inferring "free space" on a mobile device by statistical regression: Consider that the total space available for storing media items on a dis- positive is St bytes and the device memory currently includes Hi1, m2, ..., mN items requiring space:
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
A tarefa é determinar quais itens ITii1l mi2.....miL descartar, o espaço usado pelos i-tens restantesThe task is to determine which items ITii1l mi2 ..... miL discard, the space used by the remaining i-tens
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
disponível para itens inéditos.available for unpublished items.
Modelo de Regressão Linear Generalizado:Generalized Linear Regression Model:
Uma abordagem para fazer isto usa regressão estatística padrão com um modelolinear generalizado. A decisão de deletar um item é representada como uma variável aleató-ria binária y, de maneira tal que uma instância de amostra "y = 1" signifique deletar item m, e"Yi = 0" signifique reter item m,. Considere que o valor de y seja prognosticado por um vetorda co-variável medível X = [X1, X2.....x«], que não precisam ser binárias.One approach to doing this uses standard statistical regression with a generalized modelolinear. The decision to delete an item is represented as a binary random variable y, such that a sample instance "y = 1" means delete item m, and "Yi = 0" means retain item m ,. Assume that the value of y is predicted by a measurable covariate vector X = [X1, X2 ..... x «], which need not be binary.
A co-variável X prognostica y probabilisticamente. Isto é,The covariate X is prognostic and probabilistically. This is,
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
em que considera-se X0 = 1 para conveniência de notação e F(x) é uma função mo-notônica crescente que varia de F(-oo) = 0 até F(oo) = 1. A co-variável X pode ser qualquerpropriedade medível dos itens que refletem o gosto do usuário que aumenta ou diminui aprobabilidade de deletar um item.where X0 = 1 is considered for notation convenience and F (x) is an increasing mo-notonic function ranging from F (-oo) = 0 to F (oo) = 1. The covariate X can be any property measurable of items that reflect the user's taste that increases or decreases the likelihood of deleting an item.
Relembrando que y é uma variável aleatória binária, pode-se mostrar que E{y|X,/?}Recalling that y is a binary random variable, we can show that E {y | X, /?}
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
Isto é matematicamente equivalente a dizer que a variável aleatória y é descrita pe-la equação:This is mathematically equivalent to saying that the random variable y is described by the equation:
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
em que e é uma variável aleatória com distribuição cumulativa F(y).where e is a random variable with cumulative distribution F (y).
Generalização Multinomial do Modelo Linear:Multinomial Generalization of the Linear Model:
O modelo linear básico pode ser adicionalmente estendido em um modelo linearnas funções não lineares da co-variável simplesmente pela substituição do vetor da co-variável X por um vetor de co-variável não linear inéditoThe basic linear model can be further extended into a linear model by nonlinear covariate functions simply by replacing the covariate vector X with an unpublished nonlinear covariate vector
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
na formulação geral do modelo, para quein the general formulation of the model so that
<formula>formula see original document page 6</formula><formula> formula see original document page 6 </formula>
Este modelo não linear pode ser muito mais difícil de resolver se buscar-se encon-trar uma função multinomial ideal G(X)1 em vez de somente o vetor de parâmetro β. O ambi-ente computacional R suporta esta extensão não linear no solucionador do modelo lineargeneralizado, em que G(X) é uma função multinomial de vetor.This nonlinear model can be much more difficult to solve if one seeks to find an ideal multinomial function G (X) 1 instead of just the parameter vector β. The computational environment R supports this nonlinear extension in the generalized linear model solver, where G (X) is a multinomial vector function.
Estimando Parâmetros de Modelo:Estimating Model Parameters:
No caso mais comum, não se conhece o vetor β dos parâmetros do modelo a priori,mas muito em vez disto, se deriva um β' estimado dado um conjunto de exemplos (yi,xi),(y2,X2).....(Υν,Χν). N » Μ. Tipicamente, isto é feito usando métodos de probabilidade máxi-ma, que incorporam técnicas matemáticas específicas para lidar com certos detalhes quesurgem em aplicações reais. Entretanto, pode ser improvável no presente pedido que hajaum conjunto de exemplos (yi,xi), (y2,x2), , (Υν,Χν) que possa ser usado para derivar umaestimativa para o vetor do parâmetro β' = Ijff11l β\.....^k]. Em vez disto, deve-se tanto espe-cificar valores ad hoc para β quanto usar métodos alternativos para produzir estes valores.Um método prático é quantificar regras lógicas informais para reter ou deletar itens.In the most common case, the vector β of the a priori model parameters is not known, but rather, an estimated β 'is derived given a set of examples (yi, xi), (y2, X2) .... . (,Ν, Χν). N »Μ. Typically this is done using maximum probability methods, which incorporate specific mathematical techniques to deal with certain details that arise in real applications. However, it may be unlikely in the present application that there is a set of examples (yi, xi), (y2, x2),, (Υν, Χν) that can be used to derive an estimate for the parameter vector β '= Ijff11l β \. .... ^ k]. Instead, one should either specify ad hoc values for β or use alternative methods to produce these values. A practical method is to quantify informal logical rules for retaining or deleting items.
Aritmetização de Expressões Lógicas:Arithmeticization of Logic Expressions:
Uma abordagem simples é considerar que as variáveis X são valores para um con-junto de métricas X que pode ser computado para cada item de mídia e que há uma funçãológica Γ(Χ) que descreve informalmente as regras em termos das métricas para decidir seum item deve ser retido ou deletado. Usando os métodos padrões da álgebra Booleana,pode-se reduzir Γ(Χ) a uma forma lógica de "soma de produtos":A simple approach is to consider that X variables are values for a set of X metrics that can be computed for each media item and that there is a ológica (Χ) function that informally describes the rules in terms of metrics for deciding whether an item. must be retained or deleted. Using the standard methods of Boolean algebra, you can reduce Γ (Χ) to a logical form of "sum of products":
Γ(Χ) = Z1 (X) V Z2(X) V ... V Zk(X)Γ (Χ) = Z1 (X) V Z2 (X) V ... V Zk (X)
em que cada Zi(X) é uma conjunção de algum subconjunto das métricas X, por e-xemplo:where each Zi (X) is a conjunction of some subset of the X metrics, for example:
Zi(X) = X2 A X5 A X7Zi (X) = X2 A X5 A X7
Podemos traduzir a função Booleana Γ(Χ) em uma função multinomial ponderadanos valores X das métricas XWe can translate the Boolean function Γ (Χ) into a multinomial function weighted by the X values of the X metrics.
BG(X) = P1Z1 + β2ζ2 + ... + yffkzk -1/2BG (X) = P1Z1 + β2ζ2 + ... + yffkzk -1/2
em que cada Zi é o produto dos valores das métricas na conjunção correspondenteZil por exemplo:where each Zi is the product of the metric values in the corresponding conjunctionZil for example:
Zi (X) = X2X5X7.Zi (X) = X2X5X7.
Há várias maneiras de escolher os valores βλ para esta tradução da função Boole-ana Γ(Χ). Uma maneira, se considerarmos que cada Xi é uma quantidade não negativa limi-tada, é deixar cada β\ ser a recíproca do produto dos limites superiores do valor para as mé-tricas no produto correspondente, por exemplo:There are several ways to choose the βλ values for this translation of the Boole-ana Γ (Χ) function. One way, if we consider that each Xi is a limited nonnegative quantity, is to let each β \ be the reciprocal of the product from the upper limits of the metric value in the corresponding product, for example:
Bi = 1/[sup(x2) sup(x5) Sup(X7)].Bi = 1 / [sup (x2) sup (x5) Sup (x7)].
Este modelo monotônico pode ser estendido para incluir variáveis lógicas negadas-"χ, pela representação do valor métrico para uma variável lógica negada como-Xi = SUp(Xj) - Xi.Algumas Métricas de Exemplo:This monotonic model can be extended to include negated logic variables - "χ, by representing the metric value for a logic variable negated as-Xi = SUp (Xj) - Xi. Some Example Metrics:
Como aqui desenvolvido, o modelo pode incluir, como um componente, qualquermétrica que seja preditiva sobre se um item deve ser retido ou deletado. Uma classe de co-variável preditiva são métricas de popularidade, incluindo:As developed herein, the model may include, as a component, any metric that is predictive of whether an item should be retained or deleted. A predictive covariate class are popularity metrics, including:
1)0 número total de reproduções p(t) em qualquer ponto no tempo, talveznormalizado pelo número total esperado de reproduções P, (isto é, p(t)/P).1) The total number of reproductions p (t) at any point in time, perhaps normalized by the expected total number of reproductions P, (ie, p (t) / P).
2) A taxa recente de reproduções r(t) - [p(t)-p(t-At)]/At.2) The recent playback rate r (t) - [p (t) -p (t-At)] / At.
3) A taxa recente de ignorações s(t) = [q(t)-q(t-At)]/At, em que q(t) é o número devezes que o ouvinte terminou prematuramente a reprodução do item.3) The recent skip rate s (t) = [q (t) -q (t-At)] / At, where q (t) is the number of times the listener prematurely finished playing the item.
Uma outra classe de co-variável preditiva é baseada na similaridade entre um item ie alguns itens inéditos candidatos j1t j2, ..., jm- Um tipo de métrica de similaridade é baseadoem metadados. Suponha que tenhamos um conjunto de I itens de metadados (por exemplo,gênero, idade, rótulo) para cada item e que denotamos os valores dos itens de metadadospara o item j como m1i, m2i, ..., mli. Podemos definir a similaridade de metadados entre ositens i e j comoAnother class of predictive covariate is based on similarity between an item ie some unpublished candidate items j1t j2, ..., jm- A type of similarity metric is based on metadata. Suppose we have a set of I metadata items (for example, gender, age, label) for each item and we denote the metadata item values for item j as m1i, m2i, ..., mli. We can define metadata similarity between items i and j as
n(i,j) = msim(m1i,m1j) + msim(m2i, m2j) + ... + msim(mii, mij)n (i, j) = msim (m1i, m1j) + msim (m2i, m2j) + ... + msim (mii, mij)
em que a função msim(mii, m,,) avalia em "1" se mu e m,, forem considerados simila-res, e "0" caso contrário. Dado o item i e alguns itens inéditos candidatos j1? j2, ..., jm, pode-mos usar como um outro componente do modelo:where msim (mii, m ,,) evaluates to "1" if mu and m ,, are considered to be similar, and "0" otherwise. Given item i and some unpublished candidate items j1? j2, ..., jm, we can use as another component of the model:
4) A similaridade de metadados q-média n(i) = {[n(ij1)q + n(i,j2)q + ... + n(i,jI)q]/l}1/q4) Metadata similarity q-mean n (i) = {[n (ij1) q + n (i, j2) q + ... + n (i, jI) q] / l} 1 / q
Note que para q = 1, q —>0, q = -1,eq—► a q-média reduz para a média aritmé-tica, média geométrica, média harmônica e máximo (norm), respectivamente. Além do mais,também pode-se tomar o mínimo do n(lji) como uma métrica de similaridade.Note that for q = 1, q -> 0, q = -1, eq — ► q-mean reduces to arithmetic mean, geometric mean, harmonic mean and maximum (norm), respectively. In addition, you can also take the minimum of n (lji) as a similarity metric.
Além da similaridade de metadados, naqueles casos em que temos uma medida desimilaridade independente 0 <p(i,j) <1 entre itens i e j, podemos definirIn addition to metadata similarity, in those cases where we have an independent disimilarity measure 0 <p (i, j) <1 between items i and j, we can define
5) A similaridade relacionai da q-média μ(ί) = {[M(i,ji)q + M(i,j2)q + ... + M(i,ji)q]/l}1/q5) The relational similarity of q-mean μ (ί) = {[M (i, ji) q + M (i, j2) q + ... + M (i, ji) q] / l} 1 / q
Finalmente, se deixarmos U(i,j) denotar o vetor das similaridades μ(i,Ι), 11 i,j para i-tem i, podemos definir a similaridade de co-seno entre U(i,j) e U(j,i) comoFinally, if we let U (i, j) denote the vector of similarities μ (i, Ι), 11 i, j for i-tem i, we can define the cosine similarity between U (i, j) and U ( j, i) how
p(i,j) = (U(i,j), U(j,i))/ IIU(U)II ||U(j,i)||p (i, j) = (U (i, j), U (j, i)) / IIU (U) II || U (j, i) ||
Em alguns casos, pode-se desejar incluir somente as similaridades de componenteμ(i,Ι) para os itens inéditos ji, j2.....jm nos vetores de similaridade U(i,j) e U(j.i>- Usando estassimilaridades de componente p(i,j), podemos definirIn some cases, you may want to include only the similarities of component μ (i, Ι) for the unpublished items ji, j2 ..... jm in the similarity vectors U (i, j) and U (ji> - Using these similarities of component p (i, j) we can define
6) A similaridade de co-seno da q-média p(i) = ([P(Ij1)" + p(i,j2)q + ... + p(iji)q]/l}1/q6) The cosine similarity of q-mean p (i) = ([P (Ij1) "+ p (i, j2) q + ... + p (iji) q] / l} 1 / q
Outras métricas e técnicas para combinar métricas medíveis em um item em um va-lor de probabilidade, incluindo aqueles envolvidos na aritmetização de uma função lógicaΓ(Χ) que descreve informalmente se um item deve ser retido ou deletado, também estão noespírito do método para deduzir a probabilidade de que um item deve ser retido ou deletado,como aqui descrito.Other metrics and techniques for combining measurable metrics on an item in a probability value, including those involved in the arithmeticization of a logical functionΓ (Χ) that informally describes whether an item should be retained or deleted, are also in the spirit of the deduction method. the probability that an item should be retained or deleted, as described herein.
Métodos de Deleção de Item:Item Deletion Methods:
Uma vez que temos um vetor de coeficiente β, podemos determinar quais itens de-letar em uma das duas maneiras:Since we have a coefficient vector β, we can determine which items to let in one of two ways:
Deleção determinística:Deterministic Deletion:
Na abordagem determinística, a decisão real Di se deleta o item Hi1 é determinadapela E{yi|Xi,/?} = F(^Xi) prognosticada comoIn the deterministic approach, the actual decision D deletes the item Hi1 is determined by E {yi | Xi, /?} = F (^ Xi) predicted as
/ 1 usuário especifica que item deve ser deletado/ 1 user specifies which item to delete
||
di =< 0 usuário especifica que item deve ser retidodi = <0 user specifies which item to hold
\1 se E{yi|Xi/?} > B, caso contrário\ 1 if E {yi | Xi /?}> B, otherwise
em que Xi é o vetor dos fatores medidos para o item m,, e o limite 0 <B <1 é um li-mite de desejabilidade para reter itens, ou é selecionado de maneira tal que o espaço livreresultante S1 seja grande o suficiente para satisfazer todas as outras exigências de espaçoque podem ser impostas externamente.Deleção aleatóriawhere Xi is the vector of the measured factors for item m ,, and the limit 0 <B <1 is a desirable limit to retain items, or is selected such that the resulting free space S1 is large enough to satisfy all other space requirements that may be imposed externally. Random selection
A abordagem aleatória usa a variável aleatória binária y diretamente. Isto é, a deci-são d, de deletar o item mi é a variável aleatóriaThe random approach uses the binary random variable y directly. That is, the decision d, deleting the item mi is the random variable.
/1 usuário especifica que item deve se deletado/ 1 user specifies which item to delete
||
d, = < 0 usuário especifica que item deve ser retidod, = <0 user specifies which item to hold
||
\yÍT caso contrário\ yIt otherwise
em que Prfyi =1 | Xi) = F(^Xi). Dado FOffXi), técnicas de computação padrões po-dem ser usadas para gerar instâncias de amostra de uma variável aleatória binária y, com adistribuição binária exigida Prfyi = 1} e Pr{y, = 0}.where Prfyi = 1 | Xi) = F (^ Xi). Given FOffXi), standard computation techniques can be used to generate sample instances of a binary random variable y, with required binary distribution Prfyi = 1} and Pr {y, = 0}.
Em virtude de a deleção ser um processo aleatório, a quantidade de espaço livreresultante Sf também é uma variável aleatória nesta abordagem. Satisfazer um objetivo de-sejado para a quantidade resultante de espaço livre Sf >S| pode ser mais complexo do quea abordagem determinística. Isto pode ser tratado pela geração de um vetor de instânciasde amostraBecause the deletion is a random process, the amount of free space resulting from Sf is also a random variable in this approach. Satisfy a desired goal for the resulting amount of free space Sf> S | may be more complex than the deterministic approach. This can be handled by generating a sample instance vector.
Y(n) = [yi,y2.....yN],Y (n) = [yi, y2 ..... yN],
fazendo as deleções indicadas e avaliando o espaço livre resultante Sf. Então, oprocesso pode ser repetido como necessário até que a exigência Sf >S| seja satisfeita. Al-ternativamente, pode-se gerar seqüencialmente vetores de instâncias de amostra Yi1i, Y*2),não fazendo deleções até que as deleções especificadas pela instância em particular Y(m)resulte em espaço livre suficiente para satisfazer a exigência Sf >S|.Métodos e sistemas ilustrativos são descritos anteriormente para deletar de formainteligente itens de mídia em um dispositivo reprodutor móvel com base nas preferências dogosto do usuário para liberar espaço de armazenamento no dispositivo para novos itens demídia. Algumas modalidades usam co-variável preditiva Xi = [X1l x2, ..., Χκ], que são métricaspara as preferências do gosto do usuário, para chegar em uma decisão probabilística y, so-bre se cada item de mídia m, no dispositivo deve ser deletado. A co-variável Xi pode incluirmétricas dos dados de gosto local carregadas a partir do reprodutor móvel até o hospedeirodo sistema, bem como medidas de gosto de comunidade reunidas e mantidas pelo hospe-deiro do sistema de uma comunidade de usuários. Similarmente, o método pode ser incor-porado no dispositivo móvel e acionado por métricas supridas a ele pelo hospedeiro do sis-tema, ou pode ficar residente no hospedeiro do sistema, e a decisão de deleção final trans-mitida ao dispositivo móvel.making the indicated deletions and evaluating the resulting free space Sf. Then the process can be repeated as necessary until the requirement Sf> S | be satisfied. Alternatively, sample instance vectors Yi1i, Y * 2) can be sequentially generated, making no deletions until the deletions specified by the particular instance Y (m) result in sufficient free space to satisfy the requirement Sf> S | Illustrative methods and systems are described earlier for intelligently deleting media items on a mobile player device based on the user's preferences for freeing up device storage space for new media items. Some modalities use predictive covariate Xi = [X1l x2, ..., Χκ], which are metrics for a user's taste preferences, to arrive at a probabilistic decision y about each media item m on the device must be deleted. The covariate Xi can include metrics of local taste data uploaded from the mobile player to the system host, as well as community taste measures gathered and maintained by the system host of a user community. Similarly, the method may be incorporated into the mobile device and triggered by metrics supplied to it by the system host, or may be resident in the system host, and the final deletion decision transmitted to the mobile device.
Um exemplo de um método para deleção automática dos itens de mídia de um re-produtor de mídia móvel é mostrado no fluxograma da figura 1. Da forma mostrada na figu- ra, dados de reprodução de item de mídia são gravados em um reprodutor de mídia portátilna etapa 502. Então, um usuário faz uma solicitação para transferir novos itens de mídiae/ou para criar espaço livre no dispositivo na etapa 504. Então, os itens de mídia no disposi-tivo são classificados com base nos valores de probabilidade atribuídos, como indicado em506. Então, o processo de deletar itens começa em 508, iniciado do item de mídia classifi-cado mais alto (ou mais baixo, dependendo de como a classificação é estruturada) da lista.Uma vez que um item de mídia foi deletado, o sistema pode verificar para ver se um valorlimite foi alcançado em 512. Se o valor limite foi alcançado, a seqüência termina. Se não, éfeita uma verificação se o espaço exigido no dispositivo ficou disponível, como indicado em510. Se o espaço solicitado ainda não estiver livre, o próximo item na lista é deletado. Se foro caso, a seqüência termina.An example of a method for automatically deleting media items from a mobile media producer is shown in the flowchart of figure 1. As shown in the figure, media item playback data is recorded on a media player. Then, a user makes a request to transfer new media items and / or to create free space on the device in step 504. Then, the media items in the device are sorted based on the assigned probability values, such as indicated at 506. Then the process of deleting items starts at 508, starting from the highest (or lowest, depending on how the rating is structured) ranked media item from the list. Once a media item has been deleted, the system can Check to see if a limit value has been reached at 512. If the limit value has been reached, the sequence ends. If not, a check is made if the required space on the device is available as indicated in 510. If the requested space is not yet free, the next item in the list is deleted. If so, the sequence ends.
Um exemplo de um processo de computação de probabilidade é mostrado no flu-xograma da figura 2. Da forma mostrada na figura, um modelo de probabilidade é selecio-nado em 514. Então, métricas locais e/ou de comunidade são aplicadas para determinar umvetor de coeficiente da co-variável, como indicado em 516. Então, uma probabilidade devalor de deleção é atribuída a cada item de mídia no reprodutor de mídia portátil em 518.Então, os valores de deleção são aplicados no método de deleção, como previamente des-crito em 520.An example of a probability computation process is shown in the flowchart of figure 2. As shown in the figure, a probability model is selected at 514. Then local and / or community metrics are applied to determine a vector. covariate coefficient, as indicated in 516. Then, a deletion probability is assigned to each media item in the portable media player at 518. Then, the deletion values are applied in the deletion method as previously described. - written in 520.
Um outro exemplo de um método para deleção automática dos itens de mídia deum reprodutor de mídia móvel é mostrado no fluxograma da figura 3. Da forma mostrada nafigura, dados de reprodução de item de mídia são gravados em um reprodutor de mídia por-tátil na etapa 602. Então, um usuário faz uma solicitação para transferir novos itens de mídiae/ou para criar espaço livre no dispositivo na etapa 604. Então, valores de probabilidadepara deleção de cada um dos itens de mídia, ou de um subconjunto dos itens de mídia, noreprodutor de mídia portátil são acessados em 606. Então, o processo para deletar aleatori-amente itens com base nas probabilidades computadas começa em 608. Uma vez que umitem de mídia foi deletado, o sistema pode verificar para ver se um valor limite foi alcançadoem 612. Se o valor limite foi alcançado, a seqüência termina. Se não, é feita uma verificaçãose o espaço exigido no dispositivo ficou disponível, como indicado em 610. Se o espaçosolicitado ainda não estiver livre, o próximo item na lista é deletado. Se for o caso, a se-qüência termina.Another example of a method for automatically deleting media items from a mobile media player is shown in the flowchart of figure 3. As shown in the figure, media item playback data is recorded to a portable media player in step 602. A user then makes a request to transfer new media items and / or create free space on the device in step 604. Then, probability values for deleting each of the media items, or a subset of the media items, Portable media producers are accessed at 606. Then, the process of randomly deleting items based on computed probabilities starts at 608. Once a media item has been deleted, the system can check to see if a threshold value has been reached at 612. If the limit value has been reached, the sequence ends. If not, a check is made if the required space on the device is available, as indicated in 610. If the requested space is not yet free, the next item in the list is deleted. If so, the sequence ends.
Agora, métodos para auto-encher um reprodutor de mídia móvel também serãodescritos com mais detalhes. Em uma modalidade, cada um de uma pluralidade de reprodu-tores de mídia portáteis tem acesso a um servidor central ou congêneres. Cada usuário po-de obter e instalar inicialmente software em um computador local. Cada usuário tambémpode fornecer dados de gosto ao servidor.Now methods for auto-filling a mobile media player will also be described in more detail. In one embodiment, each of a plurality of portable media players has access to a central server or the like. Each user can initially obtain and install software on a local computer. Each user can also provide taste data to the server.
Depois da fase de inicialização supradescrita, um usuário pode estabelecer comu-nicação entre o servidor hospedeiro e seu reprodutor de mídia, tipicamente, pela conexão doreprodutor de mídia em um computador em rede para acessar o servidor hospedeiro. Então,o usuário pode emitir um comando de "início" para iniciar o processo de auto-enchimento.Alternativamente, o sistema pode ser configurado para iniciar automaticamente o processomediante ser conectado em um reprodutor de mídia. Em algumas versões, esta etapa tam-bém pode incluir a recuperação dos dados do gosto do usuário local, tais como contagensde reprodução, seqüências de reprodução, avaliações de item de mídia, etc. do dispositivomóvel. Ainda outros exemplos dos dados do gosto do usuário são apresentados em outrolugar desta divulgação.After the above-described initialization phase, a user can establish communication between the host server and its media player, typically by connecting the media player to a networked computer to access the host server. The user can then issue a "start" command to start the auto-fill process. Alternatively, the system can be configured to automatically start the process by being connected to a media player. In some versions, this step may also include retrieving local user taste data such as playback counts, playback sequences, media item ratings, etc. of the mobile device. Still other examples of user taste data are presented elsewhere in this disclosure.
Em algumas versões, uma lista de itens de mídia atualmente no dispositivo tambémpode ser transferida para o servidor hospedeiro. Então, o servidor hospedeiro pode suprir osdados de gosto do usuário a um sistema construtor de lista de execução independente, quepode usar todos os dados de gosto do usuário recuperados, dados de gosto do usuário his-tóricos, e/ou a lista dos itens de mídia do dispositivo móvel para fornecer ao servidor hospe-deiro as listas de execução dos itens de mídia responsivas às preferências do gosto do usu-ário. Estas listas de execução podem compreender itens de mídia em todas as bibliotecasde mídia disponíveis ao usuário e conhecidas pelo sistema construtor de lista de execução.Tipicamente, estas bibliotecas incluirão os itens de mídia licenciados para o usuário e arma-zenados no servidor para acesso pelo usuário.In some versions, a list of media items currently on the device may also be transferred to the host server. Then, the host server may supply the user's taste data to a standalone playlist builder system, which may use all retrieved user taste data, historical user taste data, and / or the list of user items. media from the mobile device to provide the host server with playlists of media items responsive to the user's preferences. These playlists can comprise media items in all user-available media libraries known to the playlist builder system. Typically, these libraries will include media items licensed to the user and stored on the server for user access. .
Uma vez que o servidor hospedeiro foi suprido com as listas de execução, o servi-dor hospedeiro pode recuperar uma lista de itens de mídia atualmente no dispositivo móvel(se a lista não foi previamente recuperada). Então, a lista de novos itens de mídia a ser car-regada sobre o dispositivo é reconciliada com a lista de itens de mídia atualmente no dispo-sitivo para determinar quanto espaço deve ser liberado no dispositivo para acomodar osnovos itens de mídia e quais itens de mídia devem ser deletados. Então, os itens de mídiaselecionados para remoção deletados e os novos itens de mídia são carregados sobre odispositivo.Once the host server has been supplied with playlists, the host server can retrieve a list of media items currently on the mobile device (if the list has not been previously retrieved). Then, the list of new media items to be loaded on the device is reconciled with the list of media items currently on the device to determine how much space should be freed up on the device to accommodate the new media items and which media items. media must be deleted. Then the deleted media items for deletion and the new media items are loaded onto the device.
Embora as etapas precedentes possam ser realizadas repetitivamente até o infinitosem intervenção de usuário explícita adicional, de vez em quando o usuário pode desejarajustar as preferências do usuário para mudar o comportamento do auto-enchimento. Porexemplo, um usuário pode desejar fornecer instruções especiais ao usuário, tais como ins-truções para marcar certos itens de mídia armazenados no Dispositivo solicitante como "nãodeletar" ou "sempre deletar". Alternativamente, um usuário pode desejar fornecer dados degosto do usuário adicional associando gostos do usuário com uma atividade específica, taiscomo dados na forma da solicitação de que uma seleção dos itens de mídia ou de um gêne-ro de itens de mídia seja para "correr", "jantar" ou "trabalhar". Como um ainda outro exem-plo, um usuário pode desejar fornecer dados de gosto do usuário temporais associando umaseleção dos itens de mídia ou de um gênero de itens de mídia com uma data ou evento futuro.Although the preceding steps can be performed repetitively to infinity without additional explicit user intervention, from time to time the user may wish to adjust user preferences to change autofill behavior. For example, a user may wish to provide the user with special instructions, such as instructions for marking certain media items stored on the requesting Device as "non-select" or "always delete". Alternatively, a user may wish to provide additional user taste data by associating user likes with a specific activity, such as data in the form of a request that a selection of media items or a genre of media items be to "run" , "dinner" or "work". As yet another example, a user may wish to provide temporal user taste data by associating a selection of media items or a media item genre with a future date or event.
Como indicado anteriormente, algumas modalidades do sistema podem ser configu-radas para considerar que o servidor hospedeiro tem acesso a um sistema construtor delista de execução que gera automaticamente listas de execução com base nas preferênciassupridas pelo usuário em resposta a uma consulta pelo servidor hospedeiro. Alguns exem-plos de tais sistemas conhecidos pelos versados na técnica incluem patente US 6.993.532,intitulado "Auto Playlist Generator" e 6.526.411, intitulado "System and Method for CreatingDynamic Playlists". Exemplos adicionais podem ser encontrados nos pedidos de patente US2002/0082901, intitulado "Relationship Discovery Engine", 2003/0221541, intitulado "AutoPlaylist Generation with Multiple Seed Songs" e 2005/0235811, intitulado "Systems for andMethods of Selection, Characterization and Automated Sequencing of Media Content". Cadauma das patentes e pedidos de patente publicados expostos são aqui incorporados pelareferência. Em modalidades preferidas, o construtor de lista de execução aceitará dados degosto do usuário em múltiplas formas, tais como um ou mais dos seguintes:As indicated earlier, some system modalities may be configured to assume that the host server has access to a runtime builder system that automatically generates playlists based on user preferences that are answered in response to a query by the host server. Examples of such systems known to those skilled in the art include US Patent 6,953,532, entitled "Auto Playlist Generator" and 6,526,411, entitled "System and Method for Creating Dynamic Playlists". Additional examples can be found in US2002 / 0082901, entitled "Relationship Discovery Engine", 2003/0221541, "AutoPlaylist Generation with Multiple Seed Songs" and 2005/0235811, entitled "Systems for and Methods of Selection, Characterization and Automated Sequencing" of Media Content ". Each of the foregoing published patents and patent applications are incorporated herein by reference. In preferred embodiments, the playlist builder will accept user's taste data in multiple forms, such as one or more of the following:
1. Etiquetas - Etiquetas são partes de informação separadas de um objeto, mas re-lacionadas a ele. Na prática da categorização colaborativa usando palavras-chaves livre-mente escolhidas, etiquetas são descritores que os indivíduos atribuem aos objetos.1. Tags - Tags are pieces of information that are separate from, but related to, an object. In the practice of collaborative categorization using freely chosen keywords, tags are descriptors that individuals assign to objects.
2. Itens de mídia ou listas de item de mídia - Listas de trilhas, filmes, etc. que sãodo mesmo tipo que os itens a ser transferidos para o dispositivo portátil.2. Media Items or Media Item Lists - Playlists, Movies, etc. which are the same type as the items being transferred to the portable device.
3. Listas de item especial - Por exemplo, itens que o usuário bane explicitamente,itens que um sistema inteligente que usa dados realimentados pelo usuário bane implicita-mente, itens que o usuário explicitamente solicita que esteja no dispositivo.3. Special Item Lists - For example, items that you explicitly ban, items that a smart system that uses user feedback data implicitly ban, items that you explicitly request to be on your device.
4. Metadados - Dados com base em texto que são regularmente associados comum item para o classificar (por exemplo, gênero, ano, data de aquisição).4. Metadata - Text-based data that is regularly associated with an item to classify it (for example, gender, year, date of purchase).
5. Avaliações - Valor definido pelo usuário que julga a qualidade do item.5. Ratings - User-defined value that judges the quality of the item.
6. Eventos - Recursos com base temporal que podem ser inferidos de um calendá-rio (por exemplo, um calendário Yahoo®).6. Events - Time-based resources that can be inferred from a calendar (for example, a Yahoo® calendar).
7. Serendipidade - Valor definido por usuário que indica a preferência do usuário doconteúdo não popular em seu fluxo contínuo de reprodução.7. Serendipity - User-defined value that indicates the user's preference for non-popular content in their streaming stream.
8. - Modelos de reprodução - Um modelo do comportamento de reprodução do itemdo usuário, tais como o número de vezes que um usuário reproduz um item de mídia antesde se cansar dele, o perfil de contagem de reprodução esperado do usuário para um itemdurante o tempo, e/ou percentual de uma lista de execução de item de mídia que um usuárioreproduz antes de mudar para um outro.8. - Playback Models - A model of a user's item playback behavior, such as the number of times a user plays a media item before getting tired of it, the user's expected playback count profile for an item over time. , and / or percentage of a media item playlist that a user produces before switching to another.
9. - Fluxo Contínuo de Reprodução - Gravação com marca de tempo da interaçãode reprodução da mídia, incluindo estatísticas, tais como itens reproduzidos por conclusão,ignorados, reiniciados e/ou deletados.9. - Continuous Playback Stream - Timestamp recording of media playback interaction, including statistics such as completion, skipped, restarted, and / or deleted items.
10. Contagem de reprodução - Número de vezes que um item de mídia foi repro-duzido durante um dado período de tempo.10. Play Count - Number of times a media item has been played back over a given period of time.
11. Dados Temporais - Preferências implícita ou explicitamente associadas comuma instância de tempo ou evento, tais como hora do dia ou dia da semana.11. Time Data - Preferences implicitly or explicitly associated with an instance of time or event, such as time of day or day of week.
12. Influências assinadas - Entradas de gosto externas definidas pelo usuário queajudam a definir a experiência desejada (por exemplo, gostos de amigos, itens de mídia de-finidos por um especialista, tal como um DJ, etc.).12. Signed Influences - User-defined external taste inputs that help define the desired experience (eg, friend's likes, expert-defined media items such as a DJ, etc.).
13. Ruído ambiental - Nível de ruído do ambiente do usuário percebido pelo identi-ficador.13. Environmental Noise - User ambient noise level perceived by the identifier.
14. Valor de descoberta - Valor definido pelo usuário para indicar os itens de mídia14. Discovery Value - User-defined value to indicate media items.
nunca reproduzidos pelo usuário que podem ser introduzidos na experiência de consumo damídia.never reproduced by the user that can be introduced into the media consumption experience.
15. Valor de redescoberta - Valor definido pelo usuário para indicar os itens de mí-dia que o usuário não reproduziu recentemente, que podem ser introduzidos na experiência15. Rediscovery Value - User-defined value to indicate the media items that the user has not recently played, which can be entered in the experiment.
30 de consumo da mídia.30 media consumption.
Dadas uma ou mais listas de execução geradas por um sistema construtor de listade execução em resposta a uma consulta, então, o servidor hospedeiro pode determinar oconjunto de itens de mídia incluído naquelas listas de execução e executar um processo deauto-enchimento, um exemplo do qual está representado na figura 4. A iniciação 702 doGiven one or more playlists generated by a playlist builder system in response to a query, then the host server can determine the set of media items included in those playlists and perform a self-fill process, an example of which is shown in figure 4. Initiation 702 of the
35 processo de auto-enchimento pode ser em resposta à ação de um único usuário, tal comoconectar o dispositivo móvel no servidor hospedeiro, ou ao recebimento de uma indicaçãoexplícita de " iniciar" pelo usuário. Então, um construtor de lista de execução, pode receberdados de gosto do usuário 720 e usar os dados para gerar uma ou mais listas de execução,como indicado em 704.The autocomplete process may be in response to a single user action, such as connecting the mobile device to the host server, or receiving an explicit "start" indication by the user. Then a playlist builder can receive user taste data 720 and use the data to generate one or more playlists, as indicated in 704.
Uma vez que a(s) lista(s) de execução foi(s) fornecida(s), o servidor hospedeiro po-de enumerar 706 o conjunto de itens de mídia naquelas listas de execução e, então, recon-ciliar 708 aquele conjunto de itens de mídia com o conjunto de itens de mídia atualmente nodispositivo. O hospedeiro pode determinar quais dos novos itens de mídia já estão no dispo-sitivo e remove-los da lisa de itens a ser carregados. Em algumas modalidades, estes itensde mídia também podem ser removidos da consideração de deleção. Então, o servidor hos-pedeiro pode usar um método para classificar efetivamente os itens de mídia no dispositivoconsiderando a probabilidade que eles devem ser deletados com base em quão compatíveleles são com os dados de gosto do usuário supridos ao sistema construtor de lista de exe-cução. Então, esta classificação pode ser usada para selecionar os itens de mídia a ser car-regados no dispositivo. O servidor hospedeiro também pode classificar os itens de mídia deuma maneira análoga, considerando a probabilidade que eles devem ser deletados do re-produtor.Once the playlist (s) have been provided, the host server may enumerate 706 the set of media items in those playlists and then reconcile that set. media items with the currently-in-place media item set. The host can determine which of the new media items are already in the device and removes them from the smooth of items to be loaded. In some embodiments, these media items may also be removed from the deletion consideration. Then the host server can use a method to effectively classify media items on the device considering the likelihood that they should be deleted based on how compatible they are with the user's taste data supplied to the playlist builder system. . This rating can then be used to select the media items to load on the device. The host server can also classify media items in a similar way, considering the likelihood that they should be deleted from the re-producer.
Usando a informação de classificação para os novos itens de mídia, o servidor hos-pedeiro pode, como mostrado em 710, selecionar o item com a probabilidade mais alta quedeve ser carregado da lista de novos itens de mídia. Então, itens pode ser deletados 712 doreprodutor de mídia até que espaço suficiente esteja disponível para o mais compatível dosnovos itens de mídia usando o método descrito a segui, depois do qual os itens de mídiasão carregados 714 no reprodutor de mídia. Este processo de selecionar 710, deletar 712 ecarregar 714 é repetido até que, por exemplo, o tempo disponível para a operação de auto-enchimento tenha decorrido, como indicado em 716, todos os itens do dispositivo tenhamsido deletados, como indicado em 718, ou todo o conjunto de itens de mídia inédito tenhasido carregado no dispositivo, como indicado em 722. Alternativamente, em circunstânciasem que não há limite de tempo no processo de carregamento, o processo de deleção 712pode deletar itens suficientes do dispositivo para liberar espaço suficiente para carregar tan-tos itens inéditos quanto a capacidade do dispositivo acomodará, ou um número pré-selecionado de itens. Um usuário também pode impor que um subconjunto em particular dememória seja usado para itens inéditos e libere aquela quantidade de espaço. Então, o pro-cesso de carregamento 714 pode carregar tantos novos itens de mídia quanto o espaço dis-ponível no dispositivo permitir em uma única operação.Using rating information for new media items, the host server can, as shown in 710, select the item with the highest probability that should be loaded from the list of new media items. Then items can be deleted 712 from the media producer until sufficient space is available for the most compatible of the new media items using the method described below, after which media items are loaded 714 into the media player. This process of selecting 710, deleting 712, and loading 714 is repeated until, for example, the time available for the autofill operation has elapsed, as indicated in 716, all device items have been deleted, as indicated in 718, or the entire set of unpublished media items has been loaded on the device, as indicated in 722. Alternatively, in circumstances where there is no time limit on the upload process, the 712 deletion process may delete enough items from the device to free enough space to load tan -the items unreleased for device capacity will accommodate, or a preselected number of items. A user can also enforce that a particular subset of memory be used for unpublished items and free that amount of space. Then the loading process 714 can load as many new media items as available device space allows in a single operation.
Finalmente, para os reprodutores de mídia que também aceitam transferências delistas de execução, a(s) lista(s) de execução pode(s) ser editada(s) para remover todos ositens inéditos que podem não ser carregados e, então, a(s) lista(s) de execução carrega-da(s) no dispositivo, como indicado em 724 e 726, respectivamente.Finally, for media players who also accept runtime transfers, the playlist (s) can be edited to remove all unpublished items that may not load, and then the ( run list (s) loaded into the device as indicated at 724 and 726 respectively.
Em algumas modalidades, itens de mídia podem ser aleatoriamente escolhidos edeletados para liberar espaço de armazenamento suficiente no reprodutor de mídia paraacomodar os novos itens de mídia. Em outras modalidades, os itens de mídia atualmente noreprodutor podem ser classificados em termos de quão compatível eles são com os critériosusados para gerar as listas de execução dos novos itens de mídia a ser carregados no dis-positivo. Então, estes itens de mídia podem ser deletados preferencialmente com base na-quela classificação. O mesmo processo também pode ser aplicado aos itens da lista de exe-cução para fornecer uma classificação invertida dos novos itens de mídia para fazer comque os itens mais desejáveis sejam carregados primeiro. Desta maneira, o subconjunto deitens inéditos mais desejáveis será carregado no evento em que todo o conjunto de novositens de mídia não pode ser carregado em função de, por exemplo, limitações de tempo oude espaço.In some embodiments, media items may be randomly chosen and engineered to free sufficient storage space on the media player to accommodate new media items. In other embodiments, currently reproducing media items can be ranked in terms of how compatible they are with the criteria used to generate playlists of new media items to be loaded onto the device. Then these media items may be deleted preferably based on that rating. The same process can also be applied to playlist items to provide a reverse sort of new media items to get the most desirable items loaded first. In this way, the subset of the most desirable unpublished items will be loaded in the event that the entire set of new media items cannot be loaded due to, for example, time or space limitations.
Como exposto, pode ser aplicado um método estatístico para inferir quais itens demídia no reprodutor devem ser deletados com base nas métricas das preferências do gostodo usuário. O método pode modelar a probabilidade condicional da decisão binária y de queum item deve ser deletado (y=1) em termos de um valor computado X para um η-vetor dasmétricas X do item:As explained, a statistical method can be applied to infer which media items in the player should be deleted based on user preference preferences metrics. The method can model the conditional probability of the binary decision y that an item should be deleted (y = 1) in terms of a computed value X for an item η-vector X of the item:
Pr{y=1 IX=IX11X2.....Xk]}=F(0G(X))Pr {y = 1 IX = IX11X2 ..... Xk]} = F (0G (X))
em que G(X) é um m-vetor das funções não lineares das métricas e β é um vetor dem valores de ponderação para combinar linearmente os componentes de G(X) em um valorescalar. As funções do componente G(X) são de uma classe em particular de função, tal quea variável de decisão y tenha um tipo em particular de modelo linear generalizadowhere G (X) is an m-vector of the nonlinear metric functions and β is a vector of weighting values for linearly combining the components of G (X) into a calar value. The functions of the G (X) component are of a particular class of function, such that the decision variable y has a particular type of generalized linear model.
y= F(£G(X))+ ey = F (£ G (X)) + e
em que F(X) é uma função monotônica de "ligação" não decrescente que mapeia (-oo, oo) para o intervalo (0,1), eeé uma variável aleatória de média zero que é consideradatendo uma distribuição relevante (embora o processo de auto-deleção opere inconsciente dadistribuição de e).where F (X) is a non-decreasing "binding" monotonic function that maps (-oo, oo) to the range (0,1), and is a zero-mean random variable that is considered to have a relevant distribution (although the process of self-deletion operate unconscious distribution of e).
Dados F(X), β e G(X) especificados, o servidor hospedeiro classifica os itens demídia no reprodutor que são candidatos para deleção e os itens inéditos a ser carregadospela primeira computação FOffG(X)) para cada item em ambos os conjuntos. Uma escolhacomum de F(x) é a função logísticaGiven F (X), β, and G (X) data specified, the host server sorts the media player items that are candidates for deletion and unpublished items to be loaded by the first FOffG (X) computation for each item in both sets. A common choice of F (x) is the logistic function.
F(x) = 1/(1+e-x)F (x) = 1 / (1 + e-x)
Percebe-se que uma vez que F(x) é uma função monotônica não decrescente, ositens podem ser classificados pelos valores computados F(/?G(X)), com os valores /?G(X)usados como desempatatores de primeira rodada quando os valores F(/?G(X)) para doisitens são idênticos e os valores /?G(X) para aqueles itens diferem. Quando ambos os valoresde FOffG(X)) e de /ffG(X) combinam para os dois itens, qualquer método preferido pode serusado para classificar um depois do outro, incluindo uma escolha aleatória. Desta maneira,a classificação dos itens de mídia em um conjunto pelos valores de F(BG(X)) é vista idênticaà classificação daqueles itens pelos valores BG(X), este último sendo uma classificação li-gada explicitamente às métricas computadas.Since F (x) is a non-decreasing monotonic function, the items can be classified by the computed values F (/? G (X)), with the values /? G (X) used as first round tiebreakers. when the F (/? G (X)) values for two items are identical and the /? G (X) values for those items differ. When both FOffG (X)) and / ffG (X) values match for both items, any preferred method can be used to rank one after another, including a random choice. Thus, the classification of media items in a set by the values of F (BG (X)) is seen identical to the classification of those items by the values of BG (X), the latter being a classification explicitly linked to computed metrics.
Um outro método para computar as métricas X = [X1,...,Xk] considera que os itensdevem ser classificados com base em um conjunto de atributos de item a1,a2.....ak) tal comoaquele supradescrito ma discussão sobre a construção da lista de execução, e em um con-junto de valores de preferência P1lP2.....pk que varia entre 0 (preferência forte) e 1 (preferên-cia fraca). O grau no qual um item satisfaz o atributo ak pode ser computado comoxK = h(ak)[100-90p(] + (1-h(ak))u(pk)Another method for computing the metrics X = [X1, ..., Xk] assumes that items should be classified based on a set of item attributes a1, a2 ..... ak) as described above in the discussion of the construction of the playlist, and a set of preference values P1lP2 ..... pk ranging from 0 (strong preference) to 1 (weak preference). The degree to which an item satisfies the ak attribute can be computed as xK = h (ak) [100-90p (] + (1-h (ak)) u (pk)
em que h(ak) = 1 se o item tiver atributo ak e h(ak) = 0 caso contrário, e u(pk) = 0 sewhere h (ak) = 1 if the item has ak attribute and h (ak) = 0 otherwise, and u (pk) = 0 if
Pk = Oe u(pk) = 5 caso contrário. Então, os itens de mídia no dispositivo podem ser classifi-cados para possível deleção pelos valoresPk = Oe u (pk) = 5 otherwise. Then media items on the device can be classified for possible deletion by
PG(X) = 50k - (X1 + ... +xK)PG (X) = 50k - (X1 + ... + xK)
Similarmente, os itens inéditos podem ser classificados de forma invertida de acor-do com os mesmos valores.Similarly, unpublished items can be sorted upside down according to the same values.
A classificação dos itens de mídia no dispositivo durante o processo de reconcilia-ção 708 estabelece a probabilidade relativa de que os itens sejam deletados. No processode deleção 712, itens são realmente deletados de uma maneira determinística ou probabilís-tica, por exemplo, pelos métodos aqui descritos. Os métodos determinísticos e probabilísti-cos usados para deleção também podem ser aplicados ao processo 712 para selecionaritens na seqüência do conjunto de itens inéditos para aumentar a diversidade das experiên-cias do usuário em operações repetidas de auto-enchimento.The classification of media items on the device during the reconciliation process 708 establishes the relative likelihood that the items will be deleted. In deletion process 712, items are actually deleted in a deterministic or probabilistic manner, for example by the methods described herein. The deterministic and probabilistic methods used for deletion can also be applied to process 712 to select items in the sequence of unpublished items to increase the diversity of user experiences in repeated autofilling operations.
A descrição exposta divulga completamente a invenção, incluindo suas modalida-des preferidas. Sem elaboração adicional, acredita-se que versados na técnica podem usara descrição exposta para utilizar a invenção até seu grau mais completo. Portanto, os e-xemplos e modalidades aqui divulgados devem ser interpretados como meramente ilustrati-vos, e não como uma limitação do escopo da presente invenção de nenhuma maneira.The foregoing description fully discloses the invention, including preferred embodiments thereof. Without further elaboration, it is believed that those skilled in the art may use the foregoing description to utilize the invention to its fullest extent. Therefore, the examples and embodiments disclosed herein are to be construed as illustrative only, and not as limiting the scope of the present invention in any way.
Ficará óbvio aos versados na técnica que muitas mudanças podem ser feitas aosdetalhes das modalidades supradescritas sem fugir dos princípios fundamentais da inven-ção. Portanto, entende-se que a invenção não deve ser limitada às modalidades específicasdivulgadas, e que modificações e outras modalidades devem ser incluídas no escopo dasreivindicações anexas.It will be obvious to those skilled in the art that many changes can be made to the details of the above-described embodiments without departing from the fundamental principles of the invention. Therefore, it is understood that the invention should not be limited to the specific embodiments disclosed, and that modifications and other embodiments should be included within the scope of the appended claims.
Portanto, o escopo da presente invenção deve ser determinado somente pelas se-guintes reivindicações.Therefore, the scope of the present invention should be determined solely by the following claims.
Claims (21)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77214706P | 2006-02-10 | 2006-02-10 | |
US60/772,147 | 2006-02-10 | ||
US77295706P | 2006-02-13 | 2006-02-13 | |
US60/772,957 | 2006-02-13 | ||
PCT/US2007/003869 WO2007095272A2 (en) | 2006-02-10 | 2007-02-12 | Systems and methods for prioritizing mobile media player files |
Publications (1)
Publication Number | Publication Date |
---|---|
BRPI0708030A2 true BRPI0708030A2 (en) | 2011-05-17 |
Family
ID=38372103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BRPI0708030-1A BRPI0708030A2 (en) | 2006-02-10 | 2007-02-12 | systems and methods for prioritizing mobile media player files |
Country Status (6)
Country | Link |
---|---|
US (3) | US7743009B2 (en) |
EP (1) | EP2024811A4 (en) |
JP (1) | JP5075132B2 (en) |
KR (2) | KR101031602B1 (en) |
BR (1) | BRPI0708030A2 (en) |
WO (1) | WO2007095272A2 (en) |
Families Citing this family (319)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7574513B2 (en) * | 2001-04-30 | 2009-08-11 | Yahoo! Inc. | Controllable track-skipping |
US8686272B2 (en) * | 2002-10-03 | 2014-04-01 | Polyphonic Human Media Interface, S.L. | Method and system for music recommendation based on immunology |
US8086752B2 (en) | 2006-11-22 | 2011-12-27 | Sonos, Inc. | Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data |
US8290603B1 (en) | 2004-06-05 | 2012-10-16 | Sonos, Inc. | User interfaces for controlling and manipulating groupings in a multi-zone media system |
US11650784B2 (en) | 2003-07-28 | 2023-05-16 | Sonos, Inc. | Adjusting volume levels |
US11106425B2 (en) | 2003-07-28 | 2021-08-31 | Sonos, Inc. | Synchronizing operations among a plurality of independently clocked digital data processing devices |
US11106424B2 (en) | 2003-07-28 | 2021-08-31 | Sonos, Inc. | Synchronizing operations among a plurality of independently clocked digital data processing devices |
US9207905B2 (en) | 2003-07-28 | 2015-12-08 | Sonos, Inc. | Method and apparatus for providing synchrony group status information |
US11294618B2 (en) | 2003-07-28 | 2022-04-05 | Sonos, Inc. | Media player system |
US8234395B2 (en) | 2003-07-28 | 2012-07-31 | Sonos, Inc. | System and method for synchronizing operations among a plurality of independently clocked digital data processing devices |
US9977561B2 (en) | 2004-04-01 | 2018-05-22 | Sonos, Inc. | Systems, methods, apparatus, and articles of manufacture to provide guest access |
US9374607B2 (en) * | 2012-06-26 | 2016-06-21 | Sonos, Inc. | Media playback system with guest access |
US8326951B1 (en) | 2004-06-05 | 2012-12-04 | Sonos, Inc. | Establishing a secure wireless network with minimum human intervention |
US8868698B2 (en) | 2004-06-05 | 2014-10-21 | Sonos, Inc. | Establishing a secure wireless network with minimum human intervention |
EP1849099B1 (en) * | 2005-02-03 | 2014-05-07 | Apple Inc. | Recommender system for identifying a new set of media items responsive to an input set of media items and knowledge base metrics |
EP1844386A4 (en) | 2005-02-04 | 2009-11-25 | Strands Inc | System for browsing through a music catalog using correlation metrics of a knowledge base of mediasets |
KR20080085142A (en) | 2005-12-19 | 2008-09-23 | 스트랜즈, 아이엔씨. | User to user referrer |
US20070244880A1 (en) * | 2006-02-03 | 2007-10-18 | Francisco Martin | Mediaset generation system |
WO2007092053A1 (en) | 2006-02-10 | 2007-08-16 | Strands, Inc. | Dynamic interactive entertainment |
US8521611B2 (en) | 2006-03-06 | 2013-08-27 | Apple Inc. | Article trading among members of a community |
US9361299B2 (en) | 2006-03-09 | 2016-06-07 | International Business Machines Corporation | RSS content administration for rendering RSS content on a digital audio player |
US8849895B2 (en) * | 2006-03-09 | 2014-09-30 | International Business Machines Corporation | Associating user selected content management directives with user selected ratings |
US9092542B2 (en) * | 2006-03-09 | 2015-07-28 | International Business Machines Corporation | Podcasting content associated with a user account |
US8112456B1 (en) * | 2006-04-07 | 2012-02-07 | Dell Products L.P. | Implicit ranking of audio content |
US8483853B1 (en) | 2006-09-12 | 2013-07-09 | Sonos, Inc. | Controlling and manipulating groupings in a multi-zone media system |
US9202509B2 (en) | 2006-09-12 | 2015-12-01 | Sonos, Inc. | Controlling and grouping in a multi-zone media system |
US8788080B1 (en) | 2006-09-12 | 2014-07-22 | Sonos, Inc. | Multi-channel pairing in a media system |
US12167216B2 (en) | 2006-09-12 | 2024-12-10 | Sonos, Inc. | Playback device pairing |
US8554868B2 (en) | 2007-01-05 | 2013-10-08 | Yahoo! Inc. | Simultaneous sharing communication interface |
US20080301187A1 (en) * | 2007-06-01 | 2008-12-04 | Concert Technology Corporation | Enhanced media item playlist comprising presence information |
US8156118B2 (en) * | 2007-08-20 | 2012-04-10 | Samsung Electronics Co., Ltd. | Method and system for generating playlists for content items |
JP4882918B2 (en) * | 2007-08-21 | 2012-02-22 | ソニー株式会社 | Information processing apparatus, information processing method, and computer program |
US8661364B2 (en) * | 2007-12-12 | 2014-02-25 | Sony Corporation | Planetary graphical interface |
GB0800660D0 (en) * | 2008-01-15 | 2008-02-20 | Music Technology Ltd | Playlist manager |
US20100077322A1 (en) * | 2008-05-20 | 2010-03-25 | Petro Michael Anthony | Systems and methods for a realtime creation and modification of a dynamic media player and a disabled user compliant video player |
US20100049741A1 (en) * | 2008-08-22 | 2010-02-25 | Ensequence, Inc. | Method and system for providing supplementary content to the user of a stored-media-content device |
US8966394B2 (en) | 2008-09-08 | 2015-02-24 | Apple Inc. | System and method for playlist generation based on similarity data |
US20100169328A1 (en) * | 2008-12-31 | 2010-07-01 | Strands, Inc. | Systems and methods for making recommendations using model-based collaborative filtering with user communities and items collections |
JP5391775B2 (en) * | 2009-03-27 | 2014-01-15 | ソニー株式会社 | Digital cinema management apparatus and digital cinema management method |
US20110004505A1 (en) * | 2009-07-01 | 2011-01-06 | Yang Pan | Methods of media asset distribution by employing electronic apparatus |
US8612860B2 (en) * | 2009-08-12 | 2013-12-17 | Warner Music Inc. | Systems, methods, and media for coordinating the presentation of media with an event |
US20110060738A1 (en) | 2009-09-08 | 2011-03-10 | Apple Inc. | Media item clustering based on similarity data |
EP2336913A3 (en) * | 2009-11-23 | 2011-06-29 | Research In Motion Limited | Virtual collection of entities in sync process |
US20110138299A1 (en) * | 2009-12-04 | 2011-06-09 | Nokia Corporation | Method and apparatus for suggesting data for transfer |
US20110191170A1 (en) * | 2010-02-02 | 2011-08-04 | Yahoo! Inc. | Similarity function in online advertising bid optimization |
US9021554B2 (en) | 2010-06-10 | 2015-04-28 | At&T Mobility Ii Llc | Unlimited access to media and applications over wireless infrastructure |
WO2011156783A2 (en) * | 2010-06-10 | 2011-12-15 | Cricket Communications, Inc. | Mobile handset for media access and playback |
US9015588B2 (en) * | 2010-06-10 | 2015-04-21 | At&T Mobility Ii Llc | Advanced playback queue management |
US20120117026A1 (en) * | 2010-06-10 | 2012-05-10 | Cricket Communications, Inc. | Play list management |
US8583674B2 (en) * | 2010-06-18 | 2013-11-12 | Microsoft Corporation | Media item recommendation |
US9104670B2 (en) * | 2010-07-21 | 2015-08-11 | Apple Inc. | Customized search or acquisition of digital media assets |
JP5768476B2 (en) * | 2010-10-11 | 2015-08-26 | オンキヨー株式会社 | Content information display device and program thereof |
US11265652B2 (en) | 2011-01-25 | 2022-03-01 | Sonos, Inc. | Playback device pairing |
US11429343B2 (en) | 2011-01-25 | 2022-08-30 | Sonos, Inc. | Stereo playback configuration and control |
EP2515303A1 (en) | 2011-04-19 | 2012-10-24 | Nagravision S.A. | A method for managing storage space in a media device |
US8719853B2 (en) | 2011-06-16 | 2014-05-06 | CSC Holdings, LLC | Flexible video-on-demand viewing period |
US9172990B2 (en) * | 2011-06-24 | 2015-10-27 | Google Technology Holdings LLC | Method and device for optimizing storage of recorded video programs |
EP2732383B1 (en) | 2011-07-12 | 2018-04-04 | Snap Inc. | Methods and systems of providing visual content editing functions |
US8983905B2 (en) | 2011-10-03 | 2015-03-17 | Apple Inc. | Merging playlists from multiple sources |
US9344292B2 (en) | 2011-12-30 | 2016-05-17 | Sonos, Inc. | Systems and methods for player setup room names |
US9230212B2 (en) * | 2012-02-02 | 2016-01-05 | Peel Technologies, Inc. | Content based recommendation system |
US11734712B2 (en) | 2012-02-24 | 2023-08-22 | Foursquare Labs, Inc. | Attributing in-store visits to media consumption based on data collected from user devices |
US8972357B2 (en) | 2012-02-24 | 2015-03-03 | Placed, Inc. | System and method for data collection to validate location data |
US8768876B2 (en) | 2012-02-24 | 2014-07-01 | Placed, Inc. | Inference pipeline system and method |
US9171068B2 (en) * | 2012-03-07 | 2015-10-27 | Ut-Battelle, Llc | Recommending personally interested contents by text mining, filtering, and interfaces |
US9171085B2 (en) * | 2012-03-07 | 2015-10-27 | Ut-Battelle, Llc | Personalized professional content recommendation |
US9729115B2 (en) | 2012-04-27 | 2017-08-08 | Sonos, Inc. | Intelligently increasing the sound level of player |
US10155168B2 (en) | 2012-05-08 | 2018-12-18 | Snap Inc. | System and method for adaptable avatars |
US20130325853A1 (en) * | 2012-05-29 | 2013-12-05 | Jeffery David Frazier | Digital media players comprising a music-speech discrimination function |
US9165066B2 (en) | 2012-06-12 | 2015-10-20 | Sony Corporation | Method and system for generating a user music taste database, method for selecting a piece of music for recommendation, music piece selection system and data processing system |
US20150206349A1 (en) | 2012-08-22 | 2015-07-23 | Goldrun Corporation | Augmented reality virtual content platform apparatuses, methods and systems |
US9008330B2 (en) | 2012-09-28 | 2015-04-14 | Sonos, Inc. | Crossover frequency adjustments for audio speakers |
WO2014065165A1 (en) * | 2012-10-26 | 2014-05-01 | ソニー株式会社 | Information processing device, information processing method and program, and information processing system |
US8775972B2 (en) | 2012-11-08 | 2014-07-08 | Snapchat, Inc. | Apparatus and method for single action control of social network profile access |
US8805835B2 (en) * | 2012-12-20 | 2014-08-12 | Clipcard Inc. | Systems and methods for integrated management of large data sets |
CN103096144A (en) * | 2013-01-21 | 2013-05-08 | 苏州亿倍信息技术有限公司 | Method and system of controlling flow information |
US9246963B2 (en) | 2013-02-12 | 2016-01-26 | Comcast Cable Communications, Llc | Custom content insertion |
US8862593B1 (en) * | 2013-03-15 | 2014-10-14 | Sowt International Ltd. | System and method for creating, managing, and publishing audio microposts |
US9705831B2 (en) | 2013-05-30 | 2017-07-11 | Snap Inc. | Apparatus and method for maintaining a message thread with opt-in permanence for entries |
US9742713B2 (en) | 2013-05-30 | 2017-08-22 | Snap Inc. | Apparatus and method for maintaining a message thread with opt-in permanence for entries |
US10439972B1 (en) | 2013-05-30 | 2019-10-08 | Snap Inc. | Apparatus and method for maintaining a message thread with opt-in permanence for entries |
US20150039678A1 (en) * | 2013-08-02 | 2015-02-05 | Google Inc. | Method for Automatically Storing New Media |
US9336332B2 (en) | 2013-08-28 | 2016-05-10 | Clipcard Inc. | Programmatic data discovery platforms for computing applications |
US9083770B1 (en) | 2013-11-26 | 2015-07-14 | Snapchat, Inc. | Method and system for integrating real time communication features in applications |
US10902459B2 (en) * | 2013-12-31 | 2021-01-26 | Salesforce.Com, Inc. | Facilitating smart advertising on curated content-based networking websites in an on-demand services environment |
CA2863124A1 (en) | 2014-01-03 | 2015-07-03 | Investel Capital Corporation | User content sharing system and method with automated external content integration |
US9628950B1 (en) | 2014-01-12 | 2017-04-18 | Investment Asset Holdings Llc | Location-based messaging |
US9226073B2 (en) | 2014-02-06 | 2015-12-29 | Sonos, Inc. | Audio output balancing during synchronized playback |
US9226087B2 (en) | 2014-02-06 | 2015-12-29 | Sonos, Inc. | Audio output balancing during synchronized playback |
US10082926B1 (en) | 2014-02-21 | 2018-09-25 | Snap Inc. | Apparatus and method for alternate channel communication initiated through a common message thread |
US8909725B1 (en) | 2014-03-07 | 2014-12-09 | Snapchat, Inc. | Content delivery network for ephemeral objects |
US10701430B2 (en) * | 2014-04-30 | 2020-06-30 | Sling Media L.L.C. | Automated optimization of synchronized video content |
US9276886B1 (en) | 2014-05-09 | 2016-03-01 | Snapchat, Inc. | Apparatus and method for dynamically configuring application component tiles |
US9703838B1 (en) * | 2014-05-13 | 2017-07-11 | Google Inc. | Multi sender and source recommendation aggregation and prompting system |
US9396354B1 (en) | 2014-05-28 | 2016-07-19 | Snapchat, Inc. | Apparatus and method for automated privacy protection in distributed images |
US9537811B2 (en) | 2014-10-02 | 2017-01-03 | Snap Inc. | Ephemeral gallery of ephemeral messages |
IL239238B (en) | 2014-06-05 | 2022-04-01 | Mobli Tech 2010 Ltd | Automatic article enrichment by social media trends |
US9113301B1 (en) | 2014-06-13 | 2015-08-18 | Snapchat, Inc. | Geo-location based event gallery |
US9225897B1 (en) | 2014-07-07 | 2015-12-29 | Snapchat, Inc. | Apparatus and method for supplying content aware photo filters |
JP6035288B2 (en) * | 2014-07-16 | 2016-11-30 | 富士フイルム株式会社 | Image processing system, client, image processing method, program, and recording medium |
US10055717B1 (en) | 2014-08-22 | 2018-08-21 | Snap Inc. | Message processor with application prompts |
US10423983B2 (en) | 2014-09-16 | 2019-09-24 | Snap Inc. | Determining targeting information based on a predictive targeting model |
US10824654B2 (en) | 2014-09-18 | 2020-11-03 | Snap Inc. | Geolocation-based pictographs |
US11216869B2 (en) | 2014-09-23 | 2022-01-04 | Snap Inc. | User interface to augment an image using geolocation |
US10284508B1 (en) | 2014-10-02 | 2019-05-07 | Snap Inc. | Ephemeral gallery of ephemeral messages with opt-in permanence |
US9015285B1 (en) | 2014-11-12 | 2015-04-21 | Snapchat, Inc. | User interface for accessing media at a geographic location |
US9385983B1 (en) | 2014-12-19 | 2016-07-05 | Snapchat, Inc. | Gallery of messages from individuals with a shared interest |
US9854219B2 (en) | 2014-12-19 | 2017-12-26 | Snap Inc. | Gallery of videos set to an audio time line |
US10311916B2 (en) | 2014-12-19 | 2019-06-04 | Snap Inc. | Gallery of videos set to an audio time line |
US9754355B2 (en) | 2015-01-09 | 2017-09-05 | Snap Inc. | Object recognition based photo filters |
US11388226B1 (en) | 2015-01-13 | 2022-07-12 | Snap Inc. | Guided personal identity based actions |
US10133705B1 (en) | 2015-01-19 | 2018-11-20 | Snap Inc. | Multichannel system |
US9521515B2 (en) | 2015-01-26 | 2016-12-13 | Mobli Technologies 2010 Ltd. | Content request by location |
US9294425B1 (en) | 2015-02-06 | 2016-03-22 | Snapchat, Inc. | Storage and processing of ephemeral messages |
US10223397B1 (en) | 2015-03-13 | 2019-03-05 | Snap Inc. | Social graph based co-location of network users |
CN112040410B (en) | 2015-03-18 | 2022-10-14 | 斯纳普公司 | Geo-fence authentication provisioning |
US9692967B1 (en) | 2015-03-23 | 2017-06-27 | Snap Inc. | Systems and methods for reducing boot time and power consumption in camera systems |
US10135949B1 (en) | 2015-05-05 | 2018-11-20 | Snap Inc. | Systems and methods for story and sub-story navigation |
US9881094B2 (en) | 2015-05-05 | 2018-01-30 | Snap Inc. | Systems and methods for automated local story generation and curation |
EP4328831A3 (en) | 2015-05-06 | 2024-05-15 | Snap Inc. | Systems and methods for ephemeral group chat |
US10248376B2 (en) | 2015-06-11 | 2019-04-02 | Sonos, Inc. | Multiple groupings in a playback system |
US10503264B1 (en) | 2015-06-16 | 2019-12-10 | Snap Inc. | Radial gesture navigation |
US9906479B1 (en) | 2015-06-16 | 2018-02-27 | Snap Inc. | Storage management for ephemeral messages |
US10993069B2 (en) | 2015-07-16 | 2021-04-27 | Snap Inc. | Dynamically adaptive media content delivery |
US10817898B2 (en) | 2015-08-13 | 2020-10-27 | Placed, Llc | Determining exposures to content presented by physical objects |
US10616162B1 (en) | 2015-08-24 | 2020-04-07 | Snap Inc. | Systems devices and methods for automatically selecting an ephemeral message availability |
US11121997B1 (en) | 2015-08-24 | 2021-09-14 | Snap Inc. | Systems, devices, and methods for determining a non-ephemeral message status in a communication system |
US9811261B1 (en) * | 2015-09-13 | 2017-11-07 | Amazon Technologies, Inc. | Dynamic buffer size |
US9747057B1 (en) * | 2015-09-13 | 2017-08-29 | Amazon Technologies, Inc. | Storage auto delete |
US10157333B1 (en) | 2015-09-15 | 2018-12-18 | Snap Inc. | Systems and methods for content tagging |
US9652896B1 (en) | 2015-10-30 | 2017-05-16 | Snap Inc. | Image based tracking in augmented reality systems |
US10394884B1 (en) * | 2015-11-16 | 2019-08-27 | Pandora Media, Llc | Selecting media for a social event according to specified event parameters |
US11119628B1 (en) | 2015-11-25 | 2021-09-14 | Snap Inc. | Dynamic graphical user interface modification and monitoring |
US10474321B2 (en) | 2015-11-30 | 2019-11-12 | Snap Inc. | Network resource location linking and visual content sharing |
US9984499B1 (en) | 2015-11-30 | 2018-05-29 | Snap Inc. | Image and point cloud based tracking and in augmented reality systems |
US12216702B1 (en) | 2015-12-08 | 2025-02-04 | Snap Inc. | Redirection to digital content based on image-search |
US10354425B2 (en) | 2015-12-18 | 2019-07-16 | Snap Inc. | Method and system for providing context relevant media augmentation |
US10303422B1 (en) | 2016-01-05 | 2019-05-28 | Sonos, Inc. | Multiple-device setup |
US10679389B2 (en) | 2016-02-26 | 2020-06-09 | Snap Inc. | Methods and systems for generation, curation, and presentation of media collections |
US11023514B2 (en) | 2016-02-26 | 2021-06-01 | Snap Inc. | Methods and systems for generation, curation, and presentation of media collections |
US10285001B2 (en) | 2016-02-26 | 2019-05-07 | Snap Inc. | Generation, curation, and presentation of media collections |
US10530731B1 (en) | 2016-03-28 | 2020-01-07 | Snap Inc. | Systems and methods for chat with audio and video elements |
US10270839B2 (en) | 2016-03-29 | 2019-04-23 | Snap Inc. | Content collection navigation and autoforwarding |
US10339365B2 (en) | 2016-03-31 | 2019-07-02 | Snap Inc. | Automated avatar generation |
US11900418B2 (en) | 2016-04-04 | 2024-02-13 | Snap Inc. | Mutable geo-fencing system |
US10686899B2 (en) | 2016-04-06 | 2020-06-16 | Snap Inc. | Messaging achievement pictograph display system |
US9813642B1 (en) | 2016-05-06 | 2017-11-07 | Snap Inc. | Dynamic activity-based image generation |
US10474353B2 (en) | 2016-05-31 | 2019-11-12 | Snap Inc. | Application control using a gesture based trigger |
US10638256B1 (en) | 2016-06-20 | 2020-04-28 | Pipbin, Inc. | System for distribution and display of mobile targeted augmented reality content |
US11044393B1 (en) | 2016-06-20 | 2021-06-22 | Pipbin, Inc. | System for curation and display of location-dependent augmented reality content in an augmented estate system |
US11785161B1 (en) | 2016-06-20 | 2023-10-10 | Pipbin, Inc. | System for user accessibility of tagged curated augmented reality content |
US10805696B1 (en) | 2016-06-20 | 2020-10-13 | Pipbin, Inc. | System for recording and targeting tagged content of user interest |
US11876941B1 (en) | 2016-06-20 | 2024-01-16 | Pipbin, Inc. | Clickable augmented reality content manager, system, and network |
US11201981B1 (en) | 2016-06-20 | 2021-12-14 | Pipbin, Inc. | System for notification of user accessibility of curated location-dependent content in an augmented estate |
US10334134B1 (en) | 2016-06-20 | 2019-06-25 | Maximillian John Suiter | Augmented real estate with location and chattel tagging system and apparatus for virtual diary, scrapbooking, game play, messaging, canvasing, advertising and social interaction |
US9681265B1 (en) | 2016-06-28 | 2017-06-13 | Snap Inc. | System to track engagement of media items |
US11507977B2 (en) | 2016-06-28 | 2022-11-22 | Snap Inc. | Methods and systems for presentation of media collections with automated advertising |
US10430838B1 (en) | 2016-06-28 | 2019-10-01 | Snap Inc. | Methods and systems for generation, curation, and presentation of media collections with automated advertising |
US10387514B1 (en) | 2016-06-30 | 2019-08-20 | Snap Inc. | Automated content curation and communication |
US10182047B1 (en) | 2016-06-30 | 2019-01-15 | Snap Inc. | Pictograph password security system |
US11334768B1 (en) | 2016-07-05 | 2022-05-17 | Snap Inc. | Ephemeral content management |
US10855632B2 (en) | 2016-07-19 | 2020-12-01 | Snap Inc. | Displaying customized electronic messaging graphics |
CN109804411B (en) | 2016-08-30 | 2023-02-17 | 斯纳普公司 | System and method for simultaneous localization and mapping |
US10552968B1 (en) | 2016-09-23 | 2020-02-04 | Snap Inc. | Dense feature scale detection for image matching |
US10609036B1 (en) | 2016-10-10 | 2020-03-31 | Snap Inc. | Social media post subscribe requests for buffer user accounts |
US10712997B2 (en) | 2016-10-17 | 2020-07-14 | Sonos, Inc. | Room association based on name |
US10432559B2 (en) | 2016-10-24 | 2019-10-01 | Snap Inc. | Generating and displaying customized avatars in electronic messages |
KR102466890B1 (en) | 2016-11-01 | 2022-11-14 | 스냅 인코포레이티드 | Fast video capture and sensor adjustment |
WO2018085848A1 (en) | 2016-11-07 | 2018-05-11 | Snap Inc. | Selective identification and order of image modifiers |
US10740939B1 (en) | 2016-12-09 | 2020-08-11 | Snap Inc. | Fast image style transfers |
US10203855B2 (en) | 2016-12-09 | 2019-02-12 | Snap Inc. | Customized user-controlled media overlays |
US11616745B2 (en) | 2017-01-09 | 2023-03-28 | Snap Inc. | Contextual generation and selection of customized media content |
US10242477B1 (en) | 2017-01-16 | 2019-03-26 | Snap Inc. | Coded vision system |
US10454857B1 (en) | 2017-01-23 | 2019-10-22 | Snap Inc. | Customized digital avatar accessories |
US10915911B2 (en) | 2017-02-03 | 2021-02-09 | Snap Inc. | System to determine a price-schedule to distribute media content |
US10319149B1 (en) | 2017-02-17 | 2019-06-11 | Snap Inc. | Augmented reality anamorphosis system |
US11250075B1 (en) | 2017-02-17 | 2022-02-15 | Snap Inc. | Searching social media content |
US11019001B1 (en) | 2017-02-20 | 2021-05-25 | Snap Inc. | Selective presentation of group messages |
US10374993B2 (en) | 2017-02-20 | 2019-08-06 | Snap Inc. | Media item attachment system |
US10074381B1 (en) | 2017-02-20 | 2018-09-11 | Snap Inc. | Augmented reality speech balloon system |
US10878837B1 (en) | 2017-03-01 | 2020-12-29 | Snap Inc. | Acoustic neural network scene detection |
US10565795B2 (en) | 2017-03-06 | 2020-02-18 | Snap Inc. | Virtual vision system |
US10523625B1 (en) | 2017-03-09 | 2019-12-31 | Snap Inc. | Restricted group content collection |
USD794607S1 (en) | 2017-03-21 | 2017-08-15 | Ikey Srour | Phone accessory |
US10581782B2 (en) | 2017-03-27 | 2020-03-03 | Snap Inc. | Generating a stitched data stream |
US10582277B2 (en) | 2017-03-27 | 2020-03-03 | Snap Inc. | Generating a stitched data stream |
US11170393B1 (en) | 2017-04-11 | 2021-11-09 | Snap Inc. | System to calculate an engagement score of location based media content |
US10387730B1 (en) | 2017-04-20 | 2019-08-20 | Snap Inc. | Augmented reality typography personalization system |
US10382372B1 (en) | 2017-04-27 | 2019-08-13 | Snap Inc. | Processing media content based on original context |
KR102515132B1 (en) | 2017-04-27 | 2023-03-28 | 스냅 인코포레이티드 | A geographic level representation of a user's location on a social media platform |
US10212541B1 (en) | 2017-04-27 | 2019-02-19 | Snap Inc. | Selective location-based identity communication |
US11893647B2 (en) | 2017-04-27 | 2024-02-06 | Snap Inc. | Location-based virtual avatars |
US10467147B1 (en) | 2017-04-28 | 2019-11-05 | Snap Inc. | Precaching unlockable data elements |
US10943255B1 (en) | 2017-04-28 | 2021-03-09 | Snap Inc. | Methods and systems for interactive advertising with media collections |
US10679428B1 (en) | 2017-05-26 | 2020-06-09 | Snap Inc. | Neural network-based image stream modification |
US10803120B1 (en) | 2017-05-31 | 2020-10-13 | Snap Inc. | Geolocation based playlists |
US10936653B2 (en) | 2017-06-02 | 2021-03-02 | Apple Inc. | Automatically predicting relevant contexts for media items |
US10788900B1 (en) | 2017-06-29 | 2020-09-29 | Snap Inc. | Pictorial symbol prediction |
US11323398B1 (en) | 2017-07-31 | 2022-05-03 | Snap Inc. | Systems, devices, and methods for progressive attachments |
US11216517B1 (en) | 2017-07-31 | 2022-01-04 | Snap Inc. | Methods and systems for selecting user generated content |
US10791077B2 (en) | 2017-08-08 | 2020-09-29 | Snap Inc. | Application-independent messaging system |
US11164376B1 (en) | 2017-08-30 | 2021-11-02 | Snap Inc. | Object modeling using light projection |
US9980100B1 (en) | 2017-08-31 | 2018-05-22 | Snap Inc. | Device location based on machine learning classifications |
US11475254B1 (en) | 2017-09-08 | 2022-10-18 | Snap Inc. | Multimodal entity identification |
US10740974B1 (en) | 2017-09-15 | 2020-08-11 | Snap Inc. | Augmented reality system |
US10474900B2 (en) | 2017-09-15 | 2019-11-12 | Snap Inc. | Real-time tracking-compensated image effects |
US10891723B1 (en) | 2017-09-29 | 2021-01-12 | Snap Inc. | Realistic neural network based image style transfer |
US10872292B1 (en) | 2017-10-09 | 2020-12-22 | Snap Inc. | Compact neural networks using condensed filters |
US10499191B1 (en) | 2017-10-09 | 2019-12-03 | Snap Inc. | Context sensitive presentation of content |
US10573043B2 (en) | 2017-10-30 | 2020-02-25 | Snap Inc. | Mobile-based cartographic control of display content |
US10599289B1 (en) | 2017-11-13 | 2020-03-24 | Snap Inc. | Interface to display animated icon |
US11551059B1 (en) | 2017-11-15 | 2023-01-10 | Snap Inc. | Modulated image segmentation |
US10885564B1 (en) | 2017-11-28 | 2021-01-05 | Snap Inc. | Methods, system, and non-transitory computer readable storage medium for dynamically configurable social media platform |
US11265273B1 (en) | 2017-12-01 | 2022-03-01 | Snap, Inc. | Dynamic media overlay with smart widget |
US10217488B1 (en) | 2017-12-15 | 2019-02-26 | Snap Inc. | Spherical video editing |
US11017173B1 (en) | 2017-12-22 | 2021-05-25 | Snap Inc. | Named entity recognition visual context and caption data |
US10523606B2 (en) | 2018-01-02 | 2019-12-31 | Snap Inc. | Generating interactive messages with asynchronous media content |
US10678818B2 (en) | 2018-01-03 | 2020-06-09 | Snap Inc. | Tag distribution visualization system |
US10482565B1 (en) | 2018-02-12 | 2019-11-19 | Snap Inc. | Multistage neural network processing using a graphics processor |
US11507614B1 (en) | 2018-02-13 | 2022-11-22 | Snap Inc. | Icon based tagging |
US10726603B1 (en) | 2018-02-28 | 2020-07-28 | Snap Inc. | Animated expressive icon |
US10979752B1 (en) | 2018-02-28 | 2021-04-13 | Snap Inc. | Generating media content items based on location information |
US10885136B1 (en) | 2018-02-28 | 2021-01-05 | Snap Inc. | Audience filtering system |
US10327096B1 (en) | 2018-03-06 | 2019-06-18 | Snap Inc. | Geo-fence selection system |
WO2019178361A1 (en) | 2018-03-14 | 2019-09-19 | Snap Inc. | Generating collectible media content items based on location information |
US11163941B1 (en) | 2018-03-30 | 2021-11-02 | Snap Inc. | Annotating a collection of media content items |
US11310176B2 (en) | 2018-04-13 | 2022-04-19 | Snap Inc. | Content suggestion system |
KR20200143464A (en) | 2018-04-18 | 2020-12-23 | 스냅 인코포레이티드 | Augmented expression system |
US10219111B1 (en) | 2018-04-18 | 2019-02-26 | Snap Inc. | Visitation tracking system |
US11487501B2 (en) | 2018-05-16 | 2022-11-01 | Snap Inc. | Device control using audio data |
US10896197B1 (en) | 2018-05-22 | 2021-01-19 | Snap Inc. | Event detection system |
US10679393B2 (en) | 2018-07-24 | 2020-06-09 | Snap Inc. | Conditional modification of augmented reality object |
US10997760B2 (en) | 2018-08-31 | 2021-05-04 | Snap Inc. | Augmented reality anthropomorphization system |
US10698583B2 (en) | 2018-09-28 | 2020-06-30 | Snap Inc. | Collaborative achievement interface |
US10936647B2 (en) * | 2018-10-04 | 2021-03-02 | International Business Machines Corporation | Generating and playing back media playlists via utilization of biometric and other data |
US10778623B1 (en) | 2018-10-31 | 2020-09-15 | Snap Inc. | Messaging and gaming applications communication platform |
US11199957B1 (en) | 2018-11-30 | 2021-12-14 | Snap Inc. | Generating customized avatars based on location information |
US10939236B1 (en) | 2018-11-30 | 2021-03-02 | Snap Inc. | Position service to determine relative position to map features |
US11709686B1 (en) | 2018-12-20 | 2023-07-25 | Snap Inc. | Media content item generation for a content sharing platform |
USD928771S1 (en) | 2019-01-07 | 2021-08-24 | Popsockets Llc | Grip and stand accessory for personal electronic device |
US11032670B1 (en) | 2019-01-14 | 2021-06-08 | Snap Inc. | Destination sharing in location sharing system |
US10939246B1 (en) | 2019-01-16 | 2021-03-02 | Snap Inc. | Location-based context information sharing in a messaging system |
US11294936B1 (en) | 2019-01-30 | 2022-04-05 | Snap Inc. | Adaptive spatial density based clustering |
US11297027B1 (en) | 2019-01-31 | 2022-04-05 | Snap Inc. | Automated image processing and insight presentation |
US11972529B2 (en) | 2019-02-01 | 2024-04-30 | Snap Inc. | Augmented reality system |
US10936066B1 (en) | 2019-02-13 | 2021-03-02 | Snap Inc. | Sleep detection in a location sharing system |
FI128788B (en) * | 2019-02-22 | 2020-12-15 | Blancco Tech Group Ip Oy | Providing user guidance on erasure process selection based on accumulated erasure reports |
US10838599B2 (en) | 2019-02-25 | 2020-11-17 | Snap Inc. | Custom media overlay system |
US10964082B2 (en) | 2019-02-26 | 2021-03-30 | Snap Inc. | Avatar based on weather |
EP3935581A4 (en) | 2019-03-04 | 2022-11-30 | Iocurrents, Inc. | Data compression and communication using machine learning |
US10852918B1 (en) | 2019-03-08 | 2020-12-01 | Snap Inc. | Contextual information in chat |
US12242979B1 (en) | 2019-03-12 | 2025-03-04 | Snap Inc. | Departure time estimation in a location sharing system |
US11868414B1 (en) | 2019-03-14 | 2024-01-09 | Snap Inc. | Graph-based prediction for contact suggestion in a location sharing system |
US10724280B1 (en) | 2019-03-15 | 2020-07-28 | Quest Usa Corp. | Double living hinge collapsible discs |
US10774871B1 (en) | 2019-03-15 | 2020-09-15 | Quest Usa Corp. | Sliding hinge collapsible discs |
US11274697B2 (en) | 2019-03-15 | 2022-03-15 | Ikey Srour | Flexible flange collapsible discs |
US11852554B1 (en) | 2019-03-21 | 2023-12-26 | Snap Inc. | Barometer calibration in a location sharing system |
US11249614B2 (en) | 2019-03-28 | 2022-02-15 | Snap Inc. | Generating personalized map interface with enhanced icons |
US10810782B1 (en) | 2019-04-01 | 2020-10-20 | Snap Inc. | Semantic texture mapping system |
US10575131B1 (en) | 2019-05-30 | 2020-02-25 | Snap Inc. | Wearable device location accuracy systems |
US10560898B1 (en) | 2019-05-30 | 2020-02-11 | Snap Inc. | Wearable device location systems |
US10582453B1 (en) | 2019-05-30 | 2020-03-03 | Snap Inc. | Wearable device location systems architecture |
US10893385B1 (en) | 2019-06-07 | 2021-01-12 | Snap Inc. | Detection of a physical collision between two client devices in a location sharing system |
US11134036B2 (en) | 2019-07-05 | 2021-09-28 | Snap Inc. | Event planning in a content sharing platform |
US11307747B2 (en) | 2019-07-11 | 2022-04-19 | Snap Inc. | Edge gesture interface with smart interactions |
US11812347B2 (en) | 2019-09-06 | 2023-11-07 | Snap Inc. | Non-textual communication and user states management |
US11821742B2 (en) | 2019-09-26 | 2023-11-21 | Snap Inc. | Travel based notifications |
US10990624B1 (en) | 2019-10-21 | 2021-04-27 | Panasonic Corporation | Methods and systems for dynamically processing media content on transportation vehicles |
US11218838B2 (en) | 2019-10-31 | 2022-01-04 | Snap Inc. | Focused map-based context information surfacing |
US11675855B2 (en) | 2019-11-18 | 2023-06-13 | Deepmind Technologies Limited | Variable thresholds in constrained optimization |
US11128715B1 (en) | 2019-12-30 | 2021-09-21 | Snap Inc. | Physical friend proximity in chat |
US10880496B1 (en) | 2019-12-30 | 2020-12-29 | Snap Inc. | Including video feed in message thread |
US11429618B2 (en) | 2019-12-30 | 2022-08-30 | Snap Inc. | Surfacing augmented reality objects |
US11169658B2 (en) | 2019-12-31 | 2021-11-09 | Snap Inc. | Combined map icon with action indicator |
US11343323B2 (en) | 2019-12-31 | 2022-05-24 | Snap Inc. | Augmented reality objects registry |
US11265281B1 (en) | 2020-01-28 | 2022-03-01 | Snap Inc. | Message deletion policy selection |
US11316806B1 (en) | 2020-01-28 | 2022-04-26 | Snap Inc. | Bulk message deletion |
US11228551B1 (en) | 2020-02-12 | 2022-01-18 | Snap Inc. | Multiple gateway message exchange |
US11516167B2 (en) | 2020-03-05 | 2022-11-29 | Snap Inc. | Storing data based on device location |
US11619501B2 (en) | 2020-03-11 | 2023-04-04 | Snap Inc. | Avatar based on trip |
US10956743B1 (en) | 2020-03-27 | 2021-03-23 | Snap Inc. | Shared augmented reality system |
US11430091B2 (en) | 2020-03-27 | 2022-08-30 | Snap Inc. | Location mapping for large scale augmented-reality |
US11625873B2 (en) | 2020-03-30 | 2023-04-11 | Snap Inc. | Personalized media overlay recommendation |
US11411900B2 (en) | 2020-03-30 | 2022-08-09 | Snap Inc. | Off-platform messaging system |
US12124678B2 (en) | 2020-03-31 | 2024-10-22 | Snap Inc. | Reply back mechanism within a messaging system |
WO2021203120A1 (en) * | 2020-03-31 | 2021-10-07 | Snap Inc. | Augmented reality beauty product tutorials |
US11676354B2 (en) | 2020-03-31 | 2023-06-13 | Snap Inc. | Augmented reality beauty product tutorials |
US11700225B2 (en) | 2020-04-23 | 2023-07-11 | Snap Inc. | Event overlay invite messaging system |
US11843574B2 (en) | 2020-05-21 | 2023-12-12 | Snap Inc. | Featured content collection interface |
US11423652B2 (en) | 2020-06-10 | 2022-08-23 | Snap Inc. | Adding beauty products to augmented reality tutorials |
EP4165489A1 (en) | 2020-06-10 | 2023-04-19 | Snap Inc. | Visual search to launch application |
US11314776B2 (en) | 2020-06-15 | 2022-04-26 | Snap Inc. | Location sharing using friend list versions |
US11483267B2 (en) | 2020-06-15 | 2022-10-25 | Snap Inc. | Location sharing using different rate-limited links |
US11290851B2 (en) | 2020-06-15 | 2022-03-29 | Snap Inc. | Location sharing using offline and online objects |
US11503432B2 (en) | 2020-06-15 | 2022-11-15 | Snap Inc. | Scalable real-time location sharing framework |
US11308327B2 (en) | 2020-06-29 | 2022-04-19 | Snap Inc. | Providing travel-based augmented reality content with a captured image |
US11580682B1 (en) | 2020-06-30 | 2023-02-14 | Snap Inc. | Messaging system with augmented reality makeup |
US11899905B2 (en) | 2020-06-30 | 2024-02-13 | Snap Inc. | Selectable items providing post-viewing context actions |
CN116114258A (en) | 2020-08-13 | 2023-05-12 | 斯纳普公司 | User interface for pose driven virtual effects |
US11349797B2 (en) | 2020-08-31 | 2022-05-31 | Snap Inc. | Co-location connection service |
US11606756B2 (en) | 2021-03-29 | 2023-03-14 | Snap Inc. | Scheduling requests for location data |
US12034680B2 (en) | 2021-03-31 | 2024-07-09 | Snap Inc. | User presence indication data management |
US11645324B2 (en) | 2021-03-31 | 2023-05-09 | Snap Inc. | Location-based timeline media content system |
US12026362B2 (en) | 2021-05-19 | 2024-07-02 | Snap Inc. | Video editing application for mobile devices |
KR20230059595A (en) | 2021-10-26 | 2023-05-03 | 삼성전자주식회사 | Method and apparatus for modeling user preferences |
US11829834B2 (en) | 2021-10-29 | 2023-11-28 | Snap Inc. | Extended QR code |
US12166839B2 (en) | 2021-10-29 | 2024-12-10 | Snap Inc. | Accessing web-based fragments for display |
US20230169113A1 (en) | 2021-10-29 | 2023-06-01 | Spotify Ab | Adjusting a playlist of media content items |
US11909797B2 (en) * | 2021-11-29 | 2024-02-20 | Spotify Ab | Systems and methods for switching between media content |
US11928783B2 (en) | 2021-12-30 | 2024-03-12 | Snap Inc. | AR position and orientation along a plane |
US12001750B2 (en) | 2022-04-20 | 2024-06-04 | Snap Inc. | Location-based shared augmented reality experience system |
US12243167B2 (en) | 2022-04-27 | 2025-03-04 | Snap Inc. | Three-dimensional mapping using disparate visual datasets |
US12164109B2 (en) | 2022-04-29 | 2024-12-10 | Snap Inc. | AR/VR enabled contact lens |
US11973730B2 (en) | 2022-06-02 | 2024-04-30 | Snap Inc. | External messaging function for an interaction system |
US12020384B2 (en) | 2022-06-21 | 2024-06-25 | Snap Inc. | Integrating augmented reality experiences with other components |
US12020386B2 (en) | 2022-06-23 | 2024-06-25 | Snap Inc. | Applying pregenerated virtual experiences in new location |
US12154232B2 (en) | 2022-09-30 | 2024-11-26 | Snap Inc. | 9-DoF object tracking |
US12088544B2 (en) | 2022-11-21 | 2024-09-10 | Snap Inc. | Saving ephemeral media to a conversation thread |
US12265664B2 (en) | 2023-02-28 | 2025-04-01 | Snap Inc. | Shared augmented reality eyewear device with hand tracking alignment |
Family Cites Families (221)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6345288B1 (en) * | 1989-08-31 | 2002-02-05 | Onename Corporation | Computer-based communication system and method using metadata defining a control-structure |
US5355302A (en) * | 1990-06-15 | 1994-10-11 | Arachnid, Inc. | System for managing a plurality of computer jukeboxes |
US5375235A (en) * | 1991-11-05 | 1994-12-20 | Northern Telecom Limited | Method of indexing keywords for searching in a database recorded on an information recording medium |
US6850252B1 (en) * | 1999-10-05 | 2005-02-01 | Steven M. Hoffberg | Intelligent electronic appliance system and method |
US5469206A (en) * | 1992-05-27 | 1995-11-21 | Philips Electronics North America Corporation | System and method for automatically correlating user preferences with electronic shopping information |
US5464946A (en) * | 1993-02-11 | 1995-11-07 | Multimedia Systems Corporation | System and apparatus for interactive multimedia entertainment |
US5583763A (en) * | 1993-09-09 | 1996-12-10 | Mni Interactive | Method and apparatus for recommending selections based on preferences in a multi-user system |
US5724521A (en) | 1994-11-03 | 1998-03-03 | Intel Corporation | Method and apparatus for providing electronic advertisements to end users in a consumer best-fit pricing manner |
US5758257A (en) * | 1994-11-29 | 1998-05-26 | Herz; Frederick | System and method for scheduling broadcast of and access to video programs and other data using customer profiles |
US6112186A (en) * | 1995-06-30 | 2000-08-29 | Microsoft Corporation | Distributed system for facilitating exchange of user information and opinion using automated collaborative filtering |
WO1997026729A2 (en) * | 1995-12-27 | 1997-07-24 | Robinson Gary B | Automated collaborative filtering in world wide web advertising |
US5950176A (en) * | 1996-03-25 | 1999-09-07 | Hsx, Inc. | Computer-implemented securities trading system with a virtual specialist function |
US5765144A (en) | 1996-06-24 | 1998-06-09 | Merrill Lynch & Co., Inc. | System for selecting liability products and preparing applications therefor |
JPH1031637A (en) * | 1996-07-17 | 1998-02-03 | Matsushita Electric Ind Co Ltd | Agent communication equipment |
US5890152A (en) * | 1996-09-09 | 1999-03-30 | Seymour Alvin Rapaport | Personal feedback browser for obtaining media files |
FR2753868A1 (en) | 1996-09-25 | 1998-03-27 | Technical Maintenance Corp | METHOD FOR SELECTING A RECORDING ON AN AUDIOVISUAL DIGITAL REPRODUCTION SYSTEM AND SYSTEM FOR IMPLEMENTING THE METHOD |
JP3917616B2 (en) | 1997-07-07 | 2007-05-23 | 株式会社東芝 | Multi-screen display method and multi-screen display device |
US6134532A (en) * | 1997-11-14 | 2000-10-17 | Aptex Software, Inc. | System and method for optimal adaptive matching of users to most relevant entity and information in real-time |
WO1999027681A2 (en) | 1997-11-25 | 1999-06-03 | Motorola Inc. | Audio content player methods, systems, and articles of manufacture |
US6000044A (en) * | 1997-11-26 | 1999-12-07 | Digital Equipment Corporation | Apparatus for randomly sampling instructions in a processor pipeline |
US6108686A (en) * | 1998-03-02 | 2000-08-22 | Williams, Jr.; Henry R. | Agent-based on-line information retrieval and viewing system |
US6317722B1 (en) | 1998-09-18 | 2001-11-13 | Amazon.Com, Inc. | Use of electronic shopping carts to generate personal recommendations |
US20050075908A1 (en) * | 1998-11-06 | 2005-04-07 | Dian Stevens | Personal business service system and method |
US6577716B1 (en) * | 1998-12-23 | 2003-06-10 | David D. Minter | Internet radio system with selective replacement capability |
AU3349500A (en) * | 1999-01-22 | 2000-08-07 | Tuneto.Com, Inc. | Digital audio and video playback with performance complement testing |
US6347313B1 (en) * | 1999-03-01 | 2002-02-12 | Hewlett-Packard Company | Information embedding based on user relevance feedback for object retrieval |
US20050210101A1 (en) * | 1999-03-04 | 2005-09-22 | Universal Electronics Inc. | System and method for providing content, management, and interactivity for client devices |
US6434621B1 (en) * | 1999-03-31 | 2002-08-13 | Hannaway & Associates | Apparatus and method of using the same for internet and intranet broadcast channel creation and management |
US6963850B1 (en) * | 1999-04-09 | 2005-11-08 | Amazon.Com, Inc. | Computer services for assisting users in locating and evaluating items in an electronic catalog based on actions performed by members of specific user communities |
US7082407B1 (en) * | 1999-04-09 | 2006-07-25 | Amazon.Com, Inc. | Purchase notification service for assisting users in selecting items from an electronic catalog |
US6538665B2 (en) | 1999-04-15 | 2003-03-25 | Apple Computer, Inc. | User interface for presenting media information |
US6430539B1 (en) * | 1999-05-06 | 2002-08-06 | Hnc Software | Predictive modeling of consumer financial behavior |
JP4743740B2 (en) * | 1999-07-16 | 2011-08-10 | マイクロソフト インターナショナル ホールディングス ビー.ブイ. | Method and system for creating automated alternative content recommendations |
US7181438B1 (en) | 1999-07-21 | 2007-02-20 | Alberti Anemometer, Llc | Database access system |
US6965868B1 (en) * | 1999-08-03 | 2005-11-15 | Michael David Bednarek | System and method for promoting commerce, including sales agent assisted commerce, in a networked economy |
US6487539B1 (en) * | 1999-08-06 | 2002-11-26 | International Business Machines Corporation | Semantic based collaborative filtering |
US6532469B1 (en) * | 1999-09-20 | 2003-03-11 | Clearforest Corp. | Determining trends using text mining |
US7072846B1 (en) * | 1999-11-16 | 2006-07-04 | Emergent Music Llc | Clusters for rapid artist-audience matching |
US6526411B1 (en) * | 1999-11-15 | 2003-02-25 | Sean Ward | System and method for creating dynamic playlists |
US7213005B2 (en) * | 1999-12-09 | 2007-05-01 | International Business Machines Corporation | Digital content distribution using web broadcasting services |
US20010007099A1 (en) | 1999-12-30 | 2001-07-05 | Diogo Rau | Automated single-point shopping cart system and method |
EP1257962A4 (en) | 2000-01-13 | 2003-05-07 | Erinmedia Inc | Privacy compliant multiple dataset correlation system |
US7051352B1 (en) | 2000-02-04 | 2006-05-23 | Koninklijke Philips Electronics N.V. | Adaptive TV program recommender |
US20020002899A1 (en) | 2000-03-22 | 2002-01-10 | Gjerdingen Robert O. | System for content based music searching |
US7979880B2 (en) | 2000-04-21 | 2011-07-12 | Cox Communications, Inc. | Method and system for profiling iTV users and for providing selective content delivery |
US20010056434A1 (en) * | 2000-04-27 | 2001-12-27 | Smartdisk Corporation | Systems, methods and computer program products for managing multimedia content |
US8352331B2 (en) * | 2000-05-03 | 2013-01-08 | Yahoo! Inc. | Relationship discovery engine |
US7599847B2 (en) * | 2000-06-09 | 2009-10-06 | Airport America | Automated internet based interactive travel planning and management system |
US6947922B1 (en) * | 2000-06-16 | 2005-09-20 | Xerox Corporation | Recommender system and method for generating implicit ratings based on user interactions with handheld devices |
US7206775B2 (en) | 2000-07-06 | 2007-04-17 | Microsoft Corporation | System and methods for the automatic transmission of new, high affinity media |
US6748395B1 (en) | 2000-07-14 | 2004-06-08 | Microsoft Corporation | System and method for dynamic playlist of media |
US6687696B2 (en) * | 2000-07-26 | 2004-02-03 | Recommind Inc. | System and method for personalized search, information filtering, and for generating recommendations utilizing statistical latent class models |
US6615208B1 (en) * | 2000-09-01 | 2003-09-02 | Telcordia Technologies, Inc. | Automatic recommendation of products using latent semantic indexing of content |
US20060015904A1 (en) * | 2000-09-08 | 2006-01-19 | Dwight Marcus | Method and apparatus for creation, distribution, assembly and verification of media |
US6704576B1 (en) | 2000-09-27 | 2004-03-09 | At&T Corp. | Method and system for communicating multimedia content in a unicast, multicast, simulcast or broadcast environment |
JP2002108351A (en) | 2000-09-28 | 2002-04-10 | Casio Comput Co Ltd | Music data distribution device, music data distribution method, and computer-readable recording medium storing music data distribution program |
US7392212B2 (en) | 2000-09-28 | 2008-06-24 | Jpmorgan Chase Bank, N.A. | User-interactive financial vehicle performance prediction, trading and training system and methods |
JP2002108943A (en) | 2000-10-02 | 2002-04-12 | Ryuichiro Iijima | Taste information collector |
TW588072B (en) * | 2000-10-10 | 2004-05-21 | Shipley Co Llc | Antireflective porogens |
US20020194215A1 (en) * | 2000-10-31 | 2002-12-19 | Christian Cantrell | Advertising application services system and method |
JP2002320203A (en) | 2001-04-19 | 2002-10-31 | Matsushita Electric Ind Co Ltd | Video signal recorder and video signal reproducer |
US6933433B1 (en) | 2000-11-08 | 2005-08-23 | Viacom, Inc. | Method for producing playlists for personalized music stations and for transmitting songs on such playlists |
US7337462B2 (en) | 2000-11-16 | 2008-02-26 | Meevee, Inc. | System and method for providing timing data for programming events |
US6785688B2 (en) * | 2000-11-21 | 2004-08-31 | America Online, Inc. | Internet streaming media workflow architecture |
US7139982B2 (en) | 2000-12-21 | 2006-11-21 | Xerox Corporation | Navigation methods, systems, and computer program products for virtual three-dimensional books |
US7021836B2 (en) * | 2000-12-26 | 2006-04-04 | Emcore Corporation | Attenuator and conditioner |
US6931454B2 (en) * | 2000-12-29 | 2005-08-16 | Intel Corporation | Method and apparatus for adaptive synchronization of network devices |
US6690918B2 (en) * | 2001-01-05 | 2004-02-10 | Soundstarts, Inc. | Networking by matching profile information over a data packet-network and a local area network |
US6914891B2 (en) * | 2001-01-10 | 2005-07-05 | Sk Teletech Co., Ltd. | Method of remote management of mobile communication terminal data |
EP1231788A1 (en) | 2001-02-12 | 2002-08-14 | Koninklijke Philips Electronics N.V. | Arrangement for distributing content, profiling center, receiving device and method |
US6647371B2 (en) * | 2001-02-13 | 2003-11-11 | Honda Giken Kogyo Kabushiki Kaisha | Method for predicting a demand for repair parts |
US6751574B2 (en) * | 2001-02-13 | 2004-06-15 | Honda Giken Kogyo Kabushiki Kaisha | System for predicting a demand for repair parts |
JPWO2002067379A1 (en) | 2001-02-23 | 2004-07-02 | 株式会社ヨコオ | Antenna with built-in filter |
US6950804B2 (en) | 2001-02-26 | 2005-09-27 | Pika Media | Systems and methods for distributing targeted multimedia content and advertising |
FR2822261A1 (en) * | 2001-03-16 | 2002-09-20 | Thomson Multimedia Sa | Navigation procedure for multimedia documents includes software selecting documents similar to current view, using data associated with each document file |
WO2002075525A1 (en) * | 2001-03-19 | 2002-09-26 | Sony Corporation | Software updating system, software updating method, and software updating program |
US8473568B2 (en) | 2001-03-26 | 2013-06-25 | Microsoft Corporation | Methods and systems for processing media content |
US20020152117A1 (en) * | 2001-04-12 | 2002-10-17 | Mike Cristofalo | System and method for targeting object oriented audio and video content to users |
DE10119067A1 (en) | 2001-04-18 | 2002-10-31 | Bosch Gmbh Robert | Method for playing multimedia data with an entertainment device |
US7574513B2 (en) | 2001-04-30 | 2009-08-11 | Yahoo! Inc. | Controllable track-skipping |
US20060091203A1 (en) | 2001-05-04 | 2006-05-04 | Anton Bakker | Systems and methods for the identification and presenting of information |
US20020178223A1 (en) * | 2001-05-23 | 2002-11-28 | Arthur A. Bushkin | System and method for disseminating knowledge over a global computer network |
US6993532B1 (en) * | 2001-05-30 | 2006-01-31 | Microsoft Corporation | Auto playlist generator |
US6990497B2 (en) * | 2001-06-26 | 2006-01-24 | Microsoft Corporation | Dynamic streaming media management |
US7877438B2 (en) * | 2001-07-20 | 2011-01-25 | Audible Magic Corporation | Method and apparatus for identifying new media content |
US7113999B2 (en) | 2001-08-14 | 2006-09-26 | International Business Machines Corporation | Method, computer readable media and apparatus for the selection and rendering of audio files in a networked environment |
WO2003036541A1 (en) * | 2001-10-22 | 2003-05-01 | Apple Computer, Inc. | Intelligent synchronization for a media player |
US7457862B2 (en) | 2001-10-22 | 2008-11-25 | Avaya, Inc. | Real time control protocol session matching |
US7043479B2 (en) * | 2001-11-16 | 2006-05-09 | Sigmatel, Inc. | Remote-directed management of media content |
CN1299505C (en) | 2001-12-13 | 2007-02-07 | 皇家飞利浦电子股份有限公司 | Recommending media content on a media system |
JP3592668B2 (en) * | 2001-12-13 | 2004-11-24 | 森永乳業株式会社 | Food preservation method and unfrozen water production method |
US20030120630A1 (en) * | 2001-12-20 | 2003-06-26 | Daniel Tunkelang | Method and system for similarity search and clustering |
US20040068552A1 (en) * | 2001-12-26 | 2004-04-08 | David Kotz | Methods and apparatus for personalized content presentation |
JP2003255958A (en) | 2002-02-28 | 2003-09-10 | Toshiba Corp | Music use state and music information providing method and recording medium |
US6941324B2 (en) * | 2002-03-21 | 2005-09-06 | Microsoft Corporation | Methods and systems for processing playlists |
US7220910B2 (en) | 2002-03-21 | 2007-05-22 | Microsoft Corporation | Methods and systems for per persona processing media content-associated metadata |
US7096234B2 (en) | 2002-03-21 | 2006-08-22 | Microsoft Corporation | Methods and systems for providing playlists |
US20030212710A1 (en) * | 2002-03-27 | 2003-11-13 | Michael J. Guy | System for tracking activity and delivery of advertising over a file network |
US7680849B2 (en) * | 2004-10-25 | 2010-03-16 | Apple Inc. | Multiple media type synchronization between host computer and media device |
US7174126B2 (en) * | 2002-05-03 | 2007-02-06 | Time Warner Interactive Video Group Inc. | Technique for effectively accessing programming listing information in an entertainment delivery system |
JP4555072B2 (en) | 2002-05-06 | 2010-09-29 | シンクロネイション インコーポレイテッド | Localized audio network and associated digital accessories |
US6987221B2 (en) * | 2002-05-30 | 2006-01-17 | Microsoft Corporation | Auto playlist generation with multiple seed songs |
US20030229689A1 (en) * | 2002-06-06 | 2003-12-11 | Microsoft Corporation | Method and system for managing stored data on a computer network |
JP4157729B2 (en) | 2002-06-12 | 2008-10-01 | 株式会社日立製作所 | Reflective image projection device, projection image display device using the same, and light source device used therefor |
US20050021470A1 (en) * | 2002-06-25 | 2005-01-27 | Bose Corporation | Intelligent music track selection |
US20040002993A1 (en) | 2002-06-26 | 2004-01-01 | Microsoft Corporation | User feedback processing of metadata associated with digital media files |
US20040003392A1 (en) * | 2002-06-26 | 2004-01-01 | Koninklijke Philips Electronics N.V. | Method and apparatus for finding and updating user group preferences in an entertainment system |
US7478323B2 (en) | 2004-10-25 | 2009-01-13 | Apple Inc. | Automated creation of media asset illustration collage |
US7136866B2 (en) | 2002-08-15 | 2006-11-14 | Microsoft Corporation | Media identifier registry |
US8103589B2 (en) * | 2002-09-16 | 2012-01-24 | Touchtunes Music Corporation | Digital downloading jukebox system with central and local music servers |
US8151304B2 (en) * | 2002-09-16 | 2012-04-03 | Touchtunes Music Corporation | Digital downloading jukebox system with user-tailored music management, communications, and other tools |
US20040073924A1 (en) * | 2002-09-30 | 2004-04-15 | Ramesh Pendakur | Broadcast scheduling and content selection based upon aggregated user profile information |
JP4302967B2 (en) | 2002-11-18 | 2009-07-29 | パイオニア株式会社 | Music search method, music search device, and music search program |
US8667525B2 (en) * | 2002-12-13 | 2014-03-04 | Sony Corporation | Targeted advertisement selection from a digital stream |
US7415181B2 (en) | 2005-07-29 | 2008-08-19 | Corning Cable Systems Llc | Fiber optic cables and assemblies for fiber to the subscriber applications |
KR100520115B1 (en) * | 2002-12-27 | 2005-10-10 | 삼성전자주식회사 | Apparatus and method for managing playlist |
JP2004221999A (en) | 2003-01-15 | 2004-08-05 | Canon Inc | Image processing method |
US20040148424A1 (en) | 2003-01-24 | 2004-07-29 | Aaron Berkson | Digital media distribution system with expiring advertisements |
US20040158860A1 (en) * | 2003-02-07 | 2004-08-12 | Microsoft Corporation | Digital music jukebox |
US20040162738A1 (en) | 2003-02-19 | 2004-08-19 | Sanders Susan O. | Internet directory system |
US7013238B1 (en) | 2003-02-24 | 2006-03-14 | Microsoft Corporation | System for delivering recommendations |
ATE541293T1 (en) | 2003-03-27 | 2012-01-15 | Koninkl Philips Electronics Nv | PLAYLIST SYNCHRONIZATION |
US20040194128A1 (en) | 2003-03-28 | 2004-09-30 | Eastman Kodak Company | Method for providing digital cinema content based upon audience metrics |
US7120619B2 (en) | 2003-04-22 | 2006-10-10 | Microsoft Corporation | Relationship view |
US7831199B2 (en) | 2006-01-03 | 2010-11-09 | Apple Inc. | Media data exchange, transfer or delivery for portable electronic devices |
TWI300352B (en) * | 2003-06-05 | 2008-09-01 | G & E Herbal Biotechnology Co Ltd | Water soluble extract from plant of solanum genus and the preparation process thereof, and pharmaceutical composition containing the water soluble extract |
US20040267715A1 (en) | 2003-06-26 | 2004-12-30 | Microsoft Corporation | Processing TOC-less media content |
JP2005021255A (en) * | 2003-06-30 | 2005-01-27 | Sony Corp | Control device and control method |
US7082573B2 (en) | 2003-07-30 | 2006-07-25 | America Online, Inc. | Method and system for managing digital assets |
US20050060350A1 (en) | 2003-09-15 | 2005-03-17 | Baum Zachariah Journey | System and method for recommendation of media segments |
US20050222989A1 (en) | 2003-09-30 | 2005-10-06 | Taher Haveliwala | Results based personalization of advertisements in a search engine |
US20060008256A1 (en) | 2003-10-01 | 2006-01-12 | Khedouri Robert K | Audio visual player apparatus and system and method of content distribution using the same |
JP3712071B2 (en) | 2003-10-02 | 2005-11-02 | ソニー株式会社 | File management apparatus, file management method, file management method program, and recording medium recording file management method program |
US20050154608A1 (en) * | 2003-10-21 | 2005-07-14 | Fair Share Digital Media Distribution | Digital media distribution and trading system used via a computer network |
US20050091146A1 (en) * | 2003-10-23 | 2005-04-28 | Robert Levinson | System and method for predicting stock prices |
US20050102610A1 (en) * | 2003-11-06 | 2005-05-12 | Wei Jie | Visual electronic library |
US20050108754A1 (en) | 2003-11-19 | 2005-05-19 | Serenade Systems | Personalized content application |
US20050114357A1 (en) * | 2003-11-20 | 2005-05-26 | Rathinavelu Chengalvarayan | Collaborative media indexing system and method |
US7801758B2 (en) | 2003-12-12 | 2010-09-21 | The Pnc Financial Services Group, Inc. | System and method for conducting an optimized customer identification program |
EP1548741A1 (en) * | 2003-12-24 | 2005-06-29 | Bose Corporation | Intelligent music track selection |
US20050160458A1 (en) | 2004-01-21 | 2005-07-21 | United Video Properties, Inc. | Interactive television system with custom video-on-demand menus based on personal profiles |
JP4214475B2 (en) * | 2004-02-03 | 2009-01-28 | ソニー株式会社 | Information processing apparatus and method, and program |
US20050193054A1 (en) | 2004-02-12 | 2005-09-01 | Wilson Eric D. | Multi-user social interaction network |
JP3103621U (en) * | 2004-02-26 | 2004-08-19 | アルプス電気株式会社 | Television tuner |
US8005850B2 (en) | 2004-03-15 | 2011-08-23 | Yahoo! Inc. | Search systems and methods with integration of user annotations |
US20050210009A1 (en) | 2004-03-18 | 2005-09-22 | Bao Tran | Systems and methods for intellectual property management |
US7403769B2 (en) * | 2004-03-23 | 2008-07-22 | Nokia Corporation | System and method for music synchronization in a mobile device |
US9335884B2 (en) | 2004-03-25 | 2016-05-10 | Microsoft Technology Licensing, Llc | Wave lens systems and methods for search results |
KR100607969B1 (en) * | 2004-04-05 | 2006-08-03 | 삼성전자주식회사 | Method and apparatus for playing multimedia play list and storing media therefor |
US20050235811A1 (en) * | 2004-04-20 | 2005-10-27 | Dukane Michael K | Systems for and methods of selection, characterization and automated sequencing of media content |
US20060005226A1 (en) * | 2004-05-17 | 2006-01-05 | Lee Peter S | System and method for synchronization of a portable media player to a user's profile |
US7127143B2 (en) | 2004-05-24 | 2006-10-24 | Corning Cable Systems Llc | Distribution cable assembly having overmolded mid-span access location |
US20070110074A1 (en) | 2004-06-04 | 2007-05-17 | Bob Bradley | System and Method for Synchronizing Media Presentation at Multiple Recipients |
US20050276570A1 (en) * | 2004-06-15 | 2005-12-15 | Reed Ogden C Jr | Systems, processes and apparatus for creating, processing and interacting with audiobooks and other media |
JP4583218B2 (en) | 2004-07-05 | 2010-11-17 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method, computer program, and system for evaluating target content |
AU2005269945A1 (en) * | 2004-07-08 | 2006-02-09 | Archer-Daniels-Midland Company | Epoxidized esters of vegetable oil fatty acids as reactive diluents |
WO2006014739A2 (en) * | 2004-07-22 | 2006-02-09 | Akoo International, Inc. | Apparatus and method for interactive content requests in a networked computer jukebox |
US20060067296A1 (en) * | 2004-09-03 | 2006-03-30 | University Of Washington | Predictive tuning of unscheduled streaming digital content |
US20060080251A1 (en) | 2004-09-22 | 2006-04-13 | Fried Steven M | Systems and methods for offering credit line products |
US8099482B2 (en) * | 2004-10-01 | 2012-01-17 | E-Cast Inc. | Prioritized content download for an entertainment device |
US20060080356A1 (en) * | 2004-10-13 | 2006-04-13 | Microsoft Corporation | System and method for inferring similarities between media objects |
US7644077B2 (en) | 2004-10-21 | 2010-01-05 | Microsoft Corporation | Methods, computer readable mediums and systems for linking related data from at least two data sources based upon a scoring algorithm |
US7844498B2 (en) | 2004-10-25 | 2010-11-30 | Apple Inc. | Online purchase of digital media bundles having interactive content |
US7302468B2 (en) * | 2004-11-01 | 2007-11-27 | Motorola Inc. | Local area preference determination system and method |
JP2008530632A (en) | 2004-11-04 | 2008-08-07 | ロカモダ, インコーポレイテッド | System and method for interactive marketing |
US7777125B2 (en) * | 2004-11-19 | 2010-08-17 | Microsoft Corporation | Constructing a table of music similarity vectors from a music similarity graph |
US20060136344A1 (en) | 2004-12-17 | 2006-06-22 | Netsuite, Inc. | Web-based business application with streamlined integration of upsell features |
US20060173916A1 (en) | 2004-12-22 | 2006-08-03 | Verbeck Sibley Timothy J R | Method and system for automatically generating a personalized sequence of rich media |
US20060143236A1 (en) * | 2004-12-29 | 2006-06-29 | Bandwidth Productions Inc. | Interactive music playlist sharing system and methods |
US7490775B2 (en) | 2004-12-30 | 2009-02-17 | Aol Llc, A Deleware Limited Liability Company | Intelligent identification of multimedia content for synchronization |
EP1835455A1 (en) | 2005-01-05 | 2007-09-19 | Musicstrands, S.A.U. | System and method for recommending multimedia elements |
US20060165571A1 (en) * | 2005-01-24 | 2006-07-27 | Seon Kim S | Nipple overcap having sterilizer |
US7707603B2 (en) | 2005-01-28 | 2010-04-27 | Microsoft Corporation | Digital media transfer based on user behavior |
US7693887B2 (en) * | 2005-02-01 | 2010-04-06 | Strands, Inc. | Dynamic identification of a new set of media items responsive to an input mediaset |
EP1849099B1 (en) | 2005-02-03 | 2014-05-07 | Apple Inc. | Recommender system for identifying a new set of media items responsive to an input set of media items and knowledge base metrics |
US7818350B2 (en) | 2005-02-28 | 2010-10-19 | Yahoo! Inc. | System and method for creating a collaborative playlist |
US8180770B2 (en) | 2005-02-28 | 2012-05-15 | Yahoo! Inc. | System and method for creating a playlist |
US20060253874A1 (en) | 2005-04-01 | 2006-11-09 | Vulcan Inc. | Mobile interface for manipulating multimedia content |
WO2006114451A1 (en) | 2005-04-22 | 2006-11-02 | Musicstrands, S.A.U. | System and method for acquiring and aggregating data relating to the reproduction of multimedia files or elements |
US20060277098A1 (en) | 2005-06-06 | 2006-12-07 | Chung Tze D | Media playing system and method for delivering multimedia content with up-to-date and targeted marketing messages over a communication network |
US20060282311A1 (en) | 2005-06-09 | 2006-12-14 | Jianfeng Jiang | Targeted advertisement network that integrates with store-shopping |
US20060288367A1 (en) | 2005-06-16 | 2006-12-21 | Swix Scott R | Systems, methods and products for tailoring and bundling content |
US20070016507A1 (en) | 2005-07-12 | 2007-01-18 | Wally Tzara | System for analysis and prediction of financial and statistical data |
US7580932B2 (en) | 2005-07-15 | 2009-08-25 | Microsoft Corporation | User interface for establishing a filtering engine |
US20070043829A1 (en) | 2005-08-17 | 2007-02-22 | Robin Dua | Method and system for accessing a storage or computing device via the Internet |
US20070073596A1 (en) | 2005-09-23 | 2007-03-29 | Alexander Jonathon P | Systems and methods for marketing and selling media |
US7877387B2 (en) | 2005-09-30 | 2011-01-25 | Strands, Inc. | Systems and methods for promotional media item selection and promotional program unit generation |
US20090070267A9 (en) | 2005-09-30 | 2009-03-12 | Musicstrands, Inc. | User programmed media delivery service |
US20070100690A1 (en) | 2005-11-02 | 2007-05-03 | Daniel Hopkins | System and method for providing targeted advertisements in user requested multimedia content |
US8341158B2 (en) | 2005-11-21 | 2012-12-25 | Sony Corporation | User's preference prediction from collective rating data |
US8131718B2 (en) | 2005-12-13 | 2012-03-06 | Muse Green Investments LLC | Intelligent data retrieval system |
KR20080085142A (en) | 2005-12-19 | 2008-09-23 | 스트랜즈, 아이엔씨. | User to user referrer |
US20070244880A1 (en) | 2006-02-03 | 2007-10-18 | Francisco Martin | Mediaset generation system |
WO2007092053A1 (en) | 2006-02-10 | 2007-08-16 | Strands, Inc. | Dynamic interactive entertainment |
US20070250429A1 (en) | 2006-04-19 | 2007-10-25 | Clinical Futures Llc | Prediction markets for assessing clinical probabilities of success |
US7761394B2 (en) | 2006-05-16 | 2010-07-20 | Sony Corporation | Augmented dataset representation using a taxonomy which accounts for similarity and dissimilarity between each record in the dataset and a user's similarity-biased intuition |
US20070271286A1 (en) | 2006-05-16 | 2007-11-22 | Khemdut Purang | Dimensionality reduction for content category data |
US20080004948A1 (en) | 2006-06-28 | 2008-01-03 | Microsoft Corporation | Auctioning for video and audio advertising |
US20080004990A1 (en) | 2006-06-28 | 2008-01-03 | Microsoft Corporation | Virtual spot market for advertisements |
US20080027881A1 (en) | 2006-07-07 | 2008-01-31 | Stephan Kurt Jan Bisse | Market trader training tool |
US20080046317A1 (en) | 2006-08-21 | 2008-02-21 | The Procter & Gamble Company | Systems and methods for predicting the efficacy of a marketing message |
EP2069965A1 (en) | 2006-09-20 | 2009-06-17 | Google, Inc. | Digital audio file management |
US7657493B2 (en) | 2006-09-28 | 2010-02-02 | Microsoft Corporation | Recommendation system that identifies a valuable user action by mining data supplied by a plurality of users to find a correlation that suggests one or more actions for notification |
US20080109378A1 (en) | 2006-10-10 | 2008-05-08 | Odiseas Papadimitriou | Financial product frequent identification and comparision service |
US7574422B2 (en) | 2006-11-17 | 2009-08-11 | Yahoo! Inc. | Collaborative-filtering contextual model optimized for an objective function for recommending items |
US20080270221A1 (en) | 2006-12-18 | 2008-10-30 | Silvaris Corporation | Determining and presenting product market prices |
US8196166B2 (en) | 2006-12-21 | 2012-06-05 | Verizon Patent And Licensing Inc. | Content hosting and advertising systems and methods |
US7842876B2 (en) | 2007-01-05 | 2010-11-30 | Harman International Industries, Incorporated | Multimedia object grouping, selection, and playback system |
US8583523B2 (en) | 2007-02-12 | 2013-11-12 | Mirko Manfredi | Method and system for providing financial services |
US20080220855A1 (en) | 2007-03-09 | 2008-09-11 | Yahoo! Inc. | System and method for permutation betting |
US20090048957A1 (en) | 2007-04-02 | 2009-02-19 | Matthew Celano | Method and system for financial counseling |
US20090024504A1 (en) | 2007-05-02 | 2009-01-22 | Kevin Lerman | System and method for forecasting fluctuations in future data and particularly for forecasting security prices by news analysis |
US8566205B2 (en) | 2007-07-18 | 2013-10-22 | Yahoo! Inc. | System and method of making markets for a finite subset of orders placed across continuous and countably infinite outcome spaces |
US8341065B2 (en) | 2007-09-13 | 2012-12-25 | Microsoft Corporation | Continuous betting interface to prediction market |
US8229824B2 (en) | 2007-09-13 | 2012-07-24 | Microsoft Corporation | Combined estimate contest and prediction market |
US7880741B2 (en) | 2007-09-13 | 2011-02-01 | Microsoft Corporation | User interface for expressing forecasting estimates |
CA2605662A1 (en) | 2007-09-28 | 2009-03-28 | International Business Machines Corporation | System and method for automated stock market operation |
US7974889B2 (en) | 2007-10-19 | 2011-07-05 | Raimbeault Sean M | Social networking interactive shopping system |
US20090276368A1 (en) | 2008-04-28 | 2009-11-05 | Strands, Inc. | Systems and methods for providing personalized recommendations of products and services based on explicit and implicit user data and feedback |
US20090299945A1 (en) | 2008-06-03 | 2009-12-03 | Strands, Inc. | Profile modeling for sharing individual user preferences |
US20100169328A1 (en) | 2008-12-31 | 2010-07-01 | Strands, Inc. | Systems and methods for making recommendations using model-based collaborative filtering with user communities and items collections |
-
2007
- 2007-02-12 BR BRPI0708030-1A patent/BRPI0708030A2/en not_active IP Right Cessation
- 2007-02-12 WO PCT/US2007/003869 patent/WO2007095272A2/en active Application Filing
- 2007-02-12 JP JP2008554437A patent/JP5075132B2/en active Active
- 2007-02-12 KR KR1020087019305A patent/KR101031602B1/en active Active
- 2007-02-12 EP EP07750691A patent/EP2024811A4/en not_active Withdrawn
- 2007-02-12 US US11/674,028 patent/US7743009B2/en active Active
- 2007-02-12 KR KR1020107016752A patent/KR20100090312A/en not_active Ceased
-
2010
- 2010-05-20 US US12/783,739 patent/US7987148B2/en active Active
-
2011
- 2011-06-23 US US13/167,500 patent/US8214315B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2024811A2 (en) | 2009-02-18 |
KR20100090312A (en) | 2010-08-13 |
JP5075132B2 (en) | 2012-11-14 |
WO2007095272A3 (en) | 2009-05-07 |
KR101031602B1 (en) | 2011-04-27 |
EP2024811A4 (en) | 2010-11-10 |
US20100268680A1 (en) | 2010-10-21 |
US7743009B2 (en) | 2010-06-22 |
US20110251995A1 (en) | 2011-10-13 |
KR20080093120A (en) | 2008-10-20 |
US8214315B2 (en) | 2012-07-03 |
US20090132453A1 (en) | 2009-05-21 |
US7987148B2 (en) | 2011-07-26 |
WO2007095272A2 (en) | 2007-08-23 |
JP2009527034A (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0708030A2 (en) | systems and methods for prioritizing mobile media player files | |
Ebesu et al. | Collaborative memory network for recommendation systems | |
TWI492596B (en) | Client side media station generation | |
US8583674B2 (en) | Media item recommendation | |
US7653761B2 (en) | Automatic delivery of personalized content to a portable media player with feedback | |
US20080097821A1 (en) | Recommendations utilizing meta-data based pair-wise lift predictions | |
US9104670B2 (en) | Customized search or acquisition of digital media assets | |
US9165255B1 (en) | Automatic sequencing of video playlists based on mood classification of each video and video cluster transitions | |
Hansen et al. | Shifting consumption towards diverse content on music streaming platforms | |
US10628385B2 (en) | Virtual collection of entities in sync process | |
US12259950B2 (en) | Model selection for production system via automated online experiments | |
Gao et al. | Learning an end-to-end structure for retrieval in large-scale recommendations | |
Zhang et al. | Disentangled representation for diversified recommendations | |
Truong et al. | Improving accuracy of recommender system by item clustering | |
CN101512506A (en) | Systems and methods for prioritizing mobile media player files | |
US20240160643A1 (en) | Adaptive multi-model item selection systems and methods | |
CN118714376A (en) | Recommended content supplement delivery method, device, electronic device and storage medium | |
Chen et al. | Informative ensemble of multi-resolution dynamic factorization models | |
US10628405B2 (en) | Manipulation of non-linearly connected transmedia content data | |
CN113378045B (en) | Digital content distribution method, device and storage medium | |
Mobasher | Context Aware Recommendation | |
Tu et al. | Quality-aware replication of multimedia data | |
Højsgaard et al. | Index Maintenance Strategy and Cost Model for Extended Cluster Pruning | |
Unal | Cost of Reliability of Dynamically Complex Systems for Data Networking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B11A | Dismissal acc. art.33 of ipl - examination not requested within 36 months of filing | ||
B04C | Request for examination: application reinstated [chapter 4.3 patent gazette] | ||
B25A | Requested transfer of rights approved |
Owner name: COLWOOD TECHNOLOGY LLC (US) Free format text: TRANSFERIDO DE: STRANDS, INC. |
|
B25A | Requested transfer of rights approved |
Owner name: APPLE INC. (US) Free format text: TRANSFERIDO DE: COLWOOD TECHNOLOGY LLC |
|
B08F | Application dismissed because of non-payment of annual fees [chapter 8.6 patent gazette] |
Free format text: REFERENTE A 9A ANUIDADE. |
|
B08K | Patent lapsed as no evidence of payment of the annual fee has been furnished to inpi [chapter 8.11 patent gazette] |
Free format text: EM VIRTUDE DO ARQUIVAMENTO PUBLICADO NA RPI 2364 DE 26-04-2016 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDO O ARQUIVAMENTO DO PEDIDO DE PATENTE, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013. |