JPH11326057A - Method and apparatus for measuring a three-dimensional object - Google Patents
Method and apparatus for measuring a three-dimensional objectInfo
- Publication number
- JPH11326057A JPH11326057A JP10138054A JP13805498A JPH11326057A JP H11326057 A JPH11326057 A JP H11326057A JP 10138054 A JP10138054 A JP 10138054A JP 13805498 A JP13805498 A JP 13805498A JP H11326057 A JPH11326057 A JP H11326057A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- light
- measuring
- color
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 21
- 230000003595 spectral effect Effects 0.000 claims abstract description 14
- 230000001678 irradiating effect Effects 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims description 83
- 238000004737 colorimetric analysis Methods 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 238000012847 principal component analysis method Methods 0.000 claims description 2
- 230000010287 polarization Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 206010014970 Ephelides Diseases 0.000 description 1
- 208000003351 Melanosis Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Image Input (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
(57)【要約】
【課題】 三次元物体の形状と色を同期させて計測する
計測装置において、表面反射光と内部拡散光とを区別し
て計測することにより、色も正確に計測できるようにす
る。また、これにより三次元物体の色彩値、分光反射率
を得、また光沢度も評価できるようにする。
【解決手段】 レンジファインダ20等の三次元形状の
計測装置と測色装置40からなり、互いの計測値を同期
させて出力する三次元物体の計測装置1Aにおいて、測
色装置40を、測定対象物2に偏光を照射する偏光照射
部41、その偏光の測定対象物2からの反射光を偏光フ
ィルタ42を通して受光する受光器43から構成する。
(57) [Problem] To provide a measuring device that measures the shape and color of a three-dimensional object in synchronization with each other by measuring the surface reflected light and the internal diffused light separately, so that the color can be accurately measured. I do. In addition, the color value and the spectral reflectance of the three-dimensional object can be obtained, and the glossiness can be evaluated. SOLUTION: In a three-dimensional object measuring device 1A which includes a three-dimensional shape measuring device such as a range finder 20 and a colorimetric device 40, and outputs the measured values in synchronization with each other, the colorimetric device 40 is a measuring object. It comprises a polarized light irradiator 41 for irradiating the object 2 with polarized light, and a light receiver 43 for receiving the reflected light of the polarized light from the measuring object 2 through a polarizing filter 42.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、測定対象物の三次
元形状と色とを同期させて計測する三次元物体の計測方
法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a three-dimensional object for measuring the three-dimensional shape and color of a measurement object in synchronization.
【0002】[0002]
【従来の技術】人は、物体の三次元形状とその色とを同
時に認識する。このため、物体の見え方を機械的客観的
に把握するためには、物体の形状と色とを同期させた状
態で計測することが必要となる。2. Description of the Related Art A person simultaneously recognizes a three-dimensional shape of an object and its color. For this reason, in order to mechanically and objectively grasp the appearance of an object, it is necessary to perform measurement in a state where the shape and color of the object are synchronized.
【0003】物体の形状は、物体表面の位置情報であ
り、その計測には種々の実用的距離計測システムがあ
る。また、色は、物体表面の反射特性であり、その計測
には、カラーTVカメラやカラースキャナ等が使用でき
る。また、これらを同期させた状態で三次元物体を計測
する装置としては、図7に示した計測装置1が提案され
ている(NTT R&D,Vol.42,No.4,465(1993))。図6は、
この計測装置1の光学系の説明図である。The shape of an object is positional information on the surface of the object, and there are various practical distance measuring systems for the measurement. The color is a reflection characteristic of the surface of the object, and a color TV camera or a color scanner can be used for the measurement. As a device for measuring a three-dimensional object in a state where these are synchronized, a measuring device 1 shown in FIG. 7 has been proposed (NTT R & D, Vol. 42, No. 4, 465 (1993)). FIG.
FIG. 2 is an explanatory diagram of an optical system of the measuring device 1.
【0004】この計測装置1は、人の顔等の測定対象物
2を固定するセンターテーブル3と測定対象物2の周囲
を回転移動し、測定対象物2の形状と色とを計測するデ
ィジタイザユニット10からなっている。ディジタイザ
ユニット10内には、レーザ光を発する形状計測用光源
21、レーザ光を垂直スリット光に変化させるレンズ系
22及び白黒CCDカメラ23が組み込まれており、こ
れらは公知のスリット光投影法により測定対象物2の三
次元形状を計測するレンジファインダ20を構成する。
また、ディジタイザユニット10内には、測色用ノンフ
リッカ光源31及びカラーCCDカメラ(カラーTVカ
メラ)32も組み込まれており、これらは測色装置30
を構成する。The measuring apparatus 1 includes a center table 3 for fixing a measurement object 2 such as a human face, and a digitizer unit that rotates around the measurement object 2 to measure the shape and color of the measurement object 2. It consists of ten. The digitizer unit 10 incorporates a shape measurement light source 21 that emits laser light, a lens system 22 that changes laser light into vertical slit light, and a monochrome CCD camera 23, which are measured by a known slit light projection method. A range finder 20 for measuring the three-dimensional shape of the object 2 is configured.
The digitizer unit 10 also incorporates a colorimetric non-flicker light source 31 and a color CCD camera (color TV camera) 32, which are
Is configured.
【0005】この計測装置1において、レーザ光源21
から発せられたレーザビームは、レンズ系22によって
垂直スリット光に変化し、測定対象物2上に投影され
る。そして、白黒CCDカメラ23でこのスリット光を
観測することにより測定対象物2の当該表面部位の距離
が計測され、さらにこれを矢印Aの周方向に走査するこ
とにより測定対象物2の三次元形状が計測される。一
方、ディジタイザユニット10内に備えられたカラーC
CDカメラ(カラーTVカメラ)32は、測色用ノンフ
リッカ光源31から発せられた光の測定対象物2からの
反射光を受光し、カラー情報を与える。したがって、こ
の計測装置1によれば、測定対象物2の三次元形状と色
とを完全に同期させたフルカラー円筒投影画像を得るこ
とが可能となる。[0005] In this measuring device 1, the laser light source 21
Is converted into vertical slit light by the lens system 22 and projected onto the measurement target 2. Then, by observing the slit light with the black-and-white CCD camera 23, the distance of the surface portion of the measuring object 2 is measured, and the distance is scanned in the circumferential direction of the arrow A to obtain the three-dimensional shape of the measuring object 2. Is measured. On the other hand, the color C provided in the digitizer unit 10
The CD camera (color TV camera) 32 receives the reflected light of the light emitted from the color measurement non-flicker light source 31 from the measurement target 2 and gives color information. Therefore, according to the measuring device 1, it is possible to obtain a full-color cylindrical projection image in which the three-dimensional shape and the color of the measurement object 2 are completely synchronized.
【0006】[0006]
【発明が解決しようとする課題】ところで、図9に示す
ように、一般に皮膚S等の物体に自然光Lが入射する
と、その一部は表面で反射し(表面反射光L1)、他は
物体内部へ入射し、散乱と吸収を繰り返し、再度表面か
ら射出する(内部拡散光L2)。ここで、表面反射光L1
は皮膚表面の小じわや毛穴等の凹凸情報を持ち、内部拡
散光L2は、シミ、そばかす、色むら等の色に関する情
報をもつ。そのため、物体の表面凹凸形状に関わらず、
色自体を計測する場合には、その物体の内部拡散光L2
を計測することが必要となる。As shown in FIG. 9, when natural light L is generally incident on an object such as skin S, a part of the light is reflected on the surface (surface reflected light L 1 ), and the other is reflected on the object. It enters the interior, repeats scattering and absorption, and exits from the surface again (internal diffused light L 2 ). Here, the surface reflected light L 1
Has a roughness information such as fine lines and pores on the skin surface, internal diffusion light L 2 has the information age spots, freckles, regarding the color such as color unevenness. Therefore, regardless of the surface unevenness of the object,
When measuring the color itself, the internal diffused light L 2 of the object
Needs to be measured.
【0007】しかしながら、図6及び図7に示した計測
装置1では、色の計測に本来必要とされる内部拡散光の
他に表面反射光も使用しているため、測定対象物2の色
を正確に測定することができない。そのため、例えば顔
を測定対象物2とした場合に得られるフルカラー円筒投
影画像では、陰影による暗さと皮膚自体の色の暗さとが
区別されにくくなり、図8に示すように、陰の部分S1
が、暗い肌色を有する部分のように計測されることとな
る。However, in the measuring device 1 shown in FIGS. 6 and 7, since the surface reflected light is used in addition to the internal diffused light originally required for color measurement, the color of the measurement object 2 is changed. It cannot be measured accurately. Therefore, in full color cylindrical projection image obtained when for example the face was measured object 2, and darkness of the color darkness and skin itself becomes difficult to be distinguished by shading, as shown in FIG. 8, the portion of the shadow S 1
Is measured like a portion having a dark skin color.
【0008】本発明は以上のような従来技術の課題に対
し、三次元物体の形状と色を同期させて計測する計測装
置において、表面反射光と内部拡散光とを区別して計測
し、色を正確に計測できるようにすることを目的とす
る。また、さらにこの計測値に基づいて色彩値や分光反
射率を得、光沢の評価も行えるようにすることを目的と
する。The present invention solves the above-mentioned problems of the prior art by using a measuring device that measures the shape and color of a three-dimensional object in synchronization with each other, and measures the color by differentiating the surface reflected light and the internal diffused light. The purpose is to enable accurate measurement. Further, it is another object of the present invention to obtain a color value and a spectral reflectance based on the measured value, so that the gloss can be evaluated.
【0009】[0009]
【課題を解決するための手段】本発明者らは、測定対象
物の三次元形状の計測と色の計測とを同期させて行うに
あたり、色の計測を表面反射光と内部拡散光とを区別し
て行うことにより上記の目的を達成できることを見出
し、本発明を完成した。Means for Solving the Problems In synchronizing the measurement of the three-dimensional shape of an object to be measured and the measurement of color, the present inventors distinguish the color measurement between surface reflected light and internally diffused light. It has been found that the above object can be achieved by performing the method separately, and the present invention has been completed.
【0010】即ち、本発明は、測定対象物の三次元形状
の計測と測色とを同期させて行う三次元物体の計測方法
において、測色用照射光に偏光を使用し、その偏光の測
定対象物からの反射光を偏光フィルタを通して受光する
ことにより、測定対象物の測色を内部拡散光又は表面反
射光に基づいて行うことを特徴とする三次元物体の計測
方法を提供する。That is, the present invention relates to a method for measuring a three-dimensional object in which the measurement of a three-dimensional shape of a measurement object and the colorimetry are performed in synchronization with each other. Provided is a method for measuring a three-dimensional object, wherein colorimetry of an object to be measured is performed based on internal diffused light or surface reflected light by receiving reflected light from the object through a polarizing filter.
【0011】また、本発明は、三次元形状の計測装置と
測色装置からなり、互いの計測値を同期させて出力する
三次元物体の計測装置において、測色装置が、測定対象
物に偏光を照射する偏光照射部、その偏光の測定対象物
からの反射光を偏光フィルタを通して受光する受光器か
らなり、受光器で検出された偏光の検出値に基づいて、
測定対象物の内部拡散光又は表面反射光の計測値を出力
することを特徴とする三次元物体の計測装置を提供す
る。Further, the present invention relates to a three-dimensional object measuring device which comprises a three-dimensional shape measuring device and a color measuring device and outputs the measured values in synchronization with each other. A polarized light irradiating unit that irradiates a polarized light, comprising a light receiver that receives the reflected light of the polarized light from the object to be measured through the polarizing filter, based on the detected value of the polarized light detected by the light receiver,
Provided is a three-dimensional object measurement device, which outputs a measurement value of internal diffused light or surface reflected light of a measurement target.
【0012】ここで、測色とは測定対象物の三刺激値
(XYZ)、色彩値(L*a*b*、L*u*v*、色相、明
度、彩度等)だけでなく、測定対象物の表面凹凸状態が
大きく寄与する光沢、質感、凹凸感等も含む広い意味で
ある。Here, the color measurement means not only the tristimulus value (XYZ) and the color value (L * a * b * , L * u * v * , hue, lightness, saturation, etc.) of the object to be measured. This has a broad meaning including gloss, texture, unevenness, etc., to which the surface unevenness of the measurement object greatly contributes.
【0013】本発明の計測装置によれば、互いに出力値
を同期させることのできる三次元形状の計測装置と測色
装置とからなるので、物体の三次元形状と色との情報を
併せ持った計測値を容易に得ることができる。さらにこ
の場合、測色装置が、測定対象物の内部拡散光を計測す
るようにした場合には、表面凹凸の影響を受けることな
く、測定対象物の三次元形状を構成する任意の表面部位
について、内部拡散光に基づいた測色結果を正確に得る
ことが可能となる。また、この内部拡散光に基づく測色
結果をRGB値で得た場合、そのRGB値に基づいて三
刺激値(XYZ)、色彩値(L*a*b*、L*u*v
*等)、分光反射率特性も正確に得ることが可能とな
る。According to the measuring device of the present invention, since the measuring device comprises a three-dimensional shape measuring device and a color measuring device capable of synchronizing output values with each other, the measuring device has information on the three-dimensional shape and color of the object together. The value can be easily obtained. Further, in this case, when the colorimeter measures the internal diffused light of the measurement target, without being affected by surface irregularities, any surface portion constituting the three-dimensional shape of the measurement target can be measured. In addition, it is possible to accurately obtain a colorimetric result based on the internal diffused light. When the colorimetric result based on the internal diffused light is obtained as RGB values, tristimulus values (XYZ), color values (L * a * b * , L * u * v) are obtained based on the RGB values.
* Etc.), it is possible to obtain the spectral reflectance characteristics accurately.
【0014】一方、測色装置が測定対象物の表面反射光
を計測するようにした場合には、任意の表面部位につい
て光沢等の表面の凹凸状態や質感に関する評価を行うこ
とが可能となる。On the other hand, when the colorimetric device measures the surface reflected light of the object to be measured, it is possible to evaluate the surface irregularities such as gloss and the texture of an arbitrary surface portion.
【0015】[0015]
【発明の実施の形態】以下、本発明の三次元物体の計測
方法及び装置を図面に基づいて詳細に説明する。なお、
各図中、同一符号は同一又は同等の構成要素を表してい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method and an apparatus for measuring a three-dimensional object according to the present invention will be described in detail with reference to the drawings. In addition,
In the respective drawings, the same reference numerals represent the same or equivalent components.
【0016】図2は、本発明の三次元物体の計測装置1
Aの外観図であり、図1は、その光学系の説明図であ
る。FIG. 2 shows a three-dimensional object measuring apparatus 1 according to the present invention.
1A is an external view of FIG. 1, and FIG. 1 is an explanatory diagram of the optical system.
【0017】この計測装置1Aは、図6及び図7に示し
た従来の計測装置1と同様に、人の顔等の測定対象物2
を固定するセンターテーブル3と測定対象物2の周囲を
矢印Aのように回転移動するディジタイザユニット10
Aからなっている。This measuring device 1A is similar to the conventional measuring device 1 shown in FIGS.
Digitizer unit 10 that rotates and moves around the center table 3 and the object 2 to be measured as shown by the arrow A.
A.
【0018】ディジタイザユニット10Aには、三次元
形状の計測装置として公知のスリット光投影法により測
定対象物2の三次元形状を測定するレンジファインダ2
0と、測色装置40とが内蔵されている。このレンジフ
ァインダ20は、レーザ光を発する形状計測用光源2
1、形状計測用光源21から発せられたレーザ光を垂直
スリット光に変化させ、測定対象物2上に投影するレン
ズ系22及びこのスリット光を測定対象物2が切断する
際の断面形状を画像解析するために使用する白黒CCD
カメラ23からなっている。なお、この白黒CCDカメ
ラ23に代えてカラーCCDカメラを設けてもよい。The digitizer unit 10A has a range finder 2 for measuring the three-dimensional shape of the measurement object 2 by a slit light projection method known as a three-dimensional shape measuring device.
0 and a colorimetric device 40. The range finder 20 includes a shape measuring light source 2 that emits laser light.
1. A laser system emitted from a shape measuring light source 21 is changed into a vertical slit light, and a lens system 22 for projecting the slit light on a measuring object 2 and a sectional shape when the measuring object 2 cuts the slit light are imaged. Monochrome CCD used for analysis
It consists of a camera 23. Note that a color CCD camera may be provided instead of the monochrome CCD camera 23.
【0019】また、レンジファインダ20は、ディジタ
イザユニット10Aを測定対象物2の周りに矢印A方向
に回転移動させて測定対象物2の検出部位を走査したと
きの白黒CCDカメラ23の出力に基づいて測定対象物
2の三次元形状を算出する演算手段(図示せず)を、デ
ィジタイザユニット10A外に有している。The range finder 20 rotates the digitizer unit 10A around the object 2 in the direction of arrow A and scans the detection site of the object 2 based on the output of the monochrome CCD camera 23. An arithmetic unit (not shown) for calculating the three-dimensional shape of the measurement target 2 is provided outside the digitizer unit 10A.
【0020】一方、ディジタイザユニット10A内の測
色装置40は、この計測装置1Aに特徴的な装置であ
り、測定対象物2に偏光を照射する偏光照射部41、偏
光照射部41から発せられた偏光の測定対象物2からの
反射光を偏光フィルタ42を通して受光する受光器43
からなっている。また、測色装置40は、受光器43で
検出された偏光の検出値に基づいて測定対象物2の内部
拡散光又は表面反射光の計測値を出力する演算手段(図
示せず)を、ディジタイザユニット10A外に有してい
る。On the other hand, the colorimetric device 40 in the digitizer unit 10A is a device characteristic of the measuring device 1A, and is emitted from the polarized light irradiating unit 41 for irradiating the measurement object 2 with polarized light. A light receiver 43 for receiving the reflected light of the polarized light from the measurement object 2 through the polarization filter 42
Consists of Further, the colorimetric device 40 includes an arithmetic unit (not shown) that outputs a measured value of the internal diffused light or the surface reflected light of the measurement target 2 based on the detected value of the polarization detected by the light receiver 43, and a digitizer. It is provided outside the unit 10A.
【0021】測色装置40の偏光照射部41は、光源4
4及び偏光フィルタ45からなっており、この光源44
としては、ハロゲンランプ、キセノンランプ、フリッカ
ーフリー蛍光灯等を使用することができる。偏光フィル
タ45としては、市販品を特に制限なく使用することが
できる。The polarization irradiating section 41 of the colorimetric device 40 includes a light source 4
4 and a polarizing filter 45.
For example, a halogen lamp, a xenon lamp, a flicker-free fluorescent lamp, or the like can be used. As the polarizing filter 45, a commercially available product can be used without any particular limitation.
【0022】受光器43の前面の偏光フィルタ42とし
ては、偏光照射部41の偏光フィルタ45と同様のもの
を使用することができるが、測定対象物2の内部拡散
光、表面反射光又はこれら双方のいずれを検出するかに
応じて、受光器43の前面の偏光フィルタ42と偏光照
射部41の偏光フィルタ45の互いの偏光方向のなす角
度が適宜直角又は同一方向となるようにする。即ち、測
定対象物2の色を正確に計測するために内部拡散光を選
択的に検出するには、受光器43の前面の偏光フィルタ
42と偏光照射部41の偏光フィルタ45の偏光方向が
直角になるようにして、表面反射光が偏光フィルタ42
を通過しないようにする。また、測定対象物2の表面反
射光を選択的に検出するには、受光器43の前面の偏光
フィルタ42と偏光照射部41の偏光フィルタ45の偏
光方向が同一となるようにし、測定対象物2に入射した
光の偏光方向が維持されている表面反射光が偏光フィル
タ42を透過できるようにする。As the polarization filter 42 on the front surface of the light receiver 43, the same one as the polarization filter 45 of the polarization irradiator 41 can be used. The angle between the polarization directions of the polarization filter 42 on the front surface of the light receiver 43 and the polarization filter 45 of the polarization irradiator 41 is set to be a right angle or the same direction as appropriate, depending on which one is detected. That is, in order to selectively detect the internal diffused light in order to accurately measure the color of the measurement object 2, the polarization direction of the polarization filter 42 on the front surface of the light receiver 43 and the polarization direction of the polarization filter 45 of the polarization irradiator 41 are perpendicular. So that the surface reflected light is
Do not pass through. Further, in order to selectively detect the surface reflected light of the measurement object 2, the polarization direction of the polarization filter 42 on the front surface of the light receiver 43 and the polarization direction of the polarization filter 45 of the polarization irradiation unit 41 are set to be the same. The surface reflection light, which maintains the polarization direction of the light incident on the light 2, can be transmitted through the polarization filter 42.
【0023】受光器43としては、カラーCCDカメラ
等を使用することが好ましい。受光器43としてカラー
CCDカメラを使用した場合に、そのRGBの出力値に
基づいて測定対象物2の内部拡散光又は表面反射光の計
測値を出力する方法は、公知の方法によることができる
(特開平2−206426号公報、特開平7−7562
9号公報等)。ただしこの場合、受光器43から得られ
た測定対象物2の内部散乱光のRGBの出力値をそのま
ま使用するのではなく、レンジファインダ20で計測さ
れた測定対象物2の三次元形状に基づいてRGBの出力
値を次のように照度補正し、補正後のR'G'B'を使用
することが好ましい。As the light receiver 43, a color CCD camera or the like is preferably used. When a color CCD camera is used as the light receiver 43, a method of outputting a measurement value of the internal diffused light or the surface reflected light of the measurement target 2 based on the RGB output values can be performed by a known method ( JP-A-2-206426, JP-A-7-7562
No. 9). However, in this case, the RGB output values of the internal scattered light of the measurement target 2 obtained from the light receiver 43 are not used as they are, but based on the three-dimensional shape of the measurement target 2 measured by the range finder 20. It is preferable to correct the illuminance of the RGB output values as follows and use the corrected R'G'B '.
【0024】[0024]
【数1】R'=R/cosθ G'=G/cosθ B'=B/cosθ (式中、θは、測定対象物2の各点の法線ベクトルと光
源方向とがなす角度(各点に入射する照明光の入射角
度)である。)R ′ = R / cos θ G ′ = G / cos θ B ′ = B / cos θ (where θ is the angle between the normal vector of each point of the object 2 and the light source direction (each point) Is the incident angle of the illumination light incident on the light source.)
【0025】この補正後の出力値R'G'B'は、必要に
応じて、公知の方法により三刺激値(XYZ)や色彩値
(L*a*b*、L*u*v*等)に変換することができる。
さらに、測定対象物2の反射光の主成分スペクトルを測
定しておくことにより、主成分分析法を用いて三刺激値
XYZから分光反射率を計測することもできる(特開平
7−174631号公報、日本写真学会誌,57巻2号,78
(1994))。The output value R'G'B 'after this correction is, if necessary, determined by a known method such as tristimulus value (XYZ) or color value (L * a * b * , L * u * v *). ) Can be converted.
Further, by measuring the main component spectrum of the reflected light of the measurement object 2, the spectral reflectance can also be measured from the tristimulus values XYZ using the principal component analysis method (Japanese Patent Application Laid-Open No. H7-174631). , Journal of the Photographic Society of Japan, Vol. 57, No. 2, 78
(1994)).
【0026】例えば、補正後の出力値R'G'B'から三
刺激値XYZを求める方法としては、次式(I)のよう
に、出力値R'G'B'の2次の項までを使用してR'G'
B'と三刺激値XYZとの変換マトリクスMを求める。For example, as a method of calculating the tristimulus value XYZ from the corrected output value R'G'B ', as shown in the following equation (I), the tristimulus value XYZ is calculated up to the second order term of the output value R'G'B'. R'G 'using
A conversion matrix M between B ′ and tristimulus values XYZ is obtained.
【0027】[0027]
【数2】 (Equation 2)
【0028】より具体的には、測定対象物2を、受光器
43とするカラーCCDカメラで撮影してその出力値R
GBを得、さらに照度補正して補正後の出力値R'G'
B'を得る。一方、分光測色器でもその測定対象物2を
測色して三刺激値XYZを求める。そして、計測装置1
Aによる出力値R'G'B'を三刺激値XYZに変換する
変換マトリクスMを、その変換により求めた三刺激値X
YZと分光測色器により直接的に求めた三刺激値XYZ
との差が最小となるように重回帰分析により決定する。
なお、このように変換マトリクスMを求めるに際して
は、R'G'B'の少なくとも2次の項までを使用するこ
とが好ましいが、これに限られず、さらに高次の項を使
用してもよい。More specifically, the object to be measured 2 is photographed by a color CCD camera serving as a light receiver 43 and its output value R
After obtaining GB, and further correcting the illuminance, the corrected output value R'G '
Get B '. On the other hand, the spectrocolorimeter also measures the color of the measurement object 2 to determine the tristimulus values XYZ. And the measuring device 1
A conversion matrix M for converting the output value R′G′B ′ by A into a tristimulus value XYZ is represented by a tristimulus value X obtained by the conversion.
Tristimulus value XYZ directly obtained by YZ and spectrophotometer
Is determined by multiple regression analysis so as to minimize the difference from.
In obtaining the transformation matrix M in this manner, it is preferable to use at least the second-order terms of R′G′B ′, but the present invention is not limited to this, and higher-order terms may be used. .
【0029】変換マトリクスMを求めた後は、受光器4
3とするカラーCCDカメラで測定対象物2の出力値R
GBを得、さらに照度補正して補正後の出力値R'G'
B'を得、変換マトリクスMを使用して得られたR'G'
B'を三刺激値XYZに変換する。また、測定対象物2
の分光反射スペクトルを得る場合には、測定対象物2の
平均的な色をベースとして主成分分析する。After obtaining the conversion matrix M, the light receiving device 4
The output value R of the measuring object 2 by a color CCD camera
After obtaining GB, and further correcting the illuminance, the corrected output value R'G '
B ′ and R′G ′ obtained using the transformation matrix M
B ′ is converted into tristimulus values XYZ. In addition, measurement object 2
In order to obtain the spectral reflection spectrum of, the principal component analysis is performed based on the average color of the measurement object 2.
【0030】さらに、受光器43で計測されるRGBの
表面反射光量に基づいて光沢度を評価することもでき
る。Further, the glossiness can be evaluated based on the amount of RGB surface reflected light measured by the light receiver 43.
【0031】この計測装置1Aでは、以上のようにして
測色装置40で求められる内部拡散光又は表面反射光に
基づく計測値を、レンジファインダ20により求められ
る計測値と同期させて出力するので、測定対象物2の三
次元形状の各点ごとに正確に色彩、明度、分光反射率、
光沢、質感等の情報をもった画像を形成することができ
る。In the measuring device 1A, the measured value based on the internal diffused light or the surface reflected light obtained by the colorimetric device 40 is output in synchronization with the measured value obtained by the range finder 20 as described above. Color, brightness, spectral reflectance, and color accuracy for each point of the three-dimensional shape of the measurement object 2
An image having information such as gloss and texture can be formed.
【0032】したがって、例えば人の顔を測定対象物2
とした場合にこの計測装置1Aで得られるフルカラー円
筒投影画像は、図8に示した従来のフルカラー円筒投影
画像に比して、図3に示したように、陰影による暗さと
皮膚自体の色の暗さとが区別されたものとなる。Therefore, for example, a human face is measured
In this case, as shown in FIG. 3, the full-color cylindrical projection image obtained by the measuring apparatus 1A is different from the conventional full-color cylindrical projection image shown in FIG. Darkness is distinguished.
【0033】また、図6,図7に示した従来の計測装置
1によれば、測定対象物2が内部拡散光の他に表面反射
光を有する場合、従っておよそどんな物体を測定対象物
とする場合でも、内部拡散光に基づく色彩値や分光反射
率を計測することができず、表面反射光に基づく光沢度
も算出することができないが、本発明の計測装置1Aに
よれば、これらを求めることが可能となる。According to the conventional measuring apparatus 1 shown in FIGS. 6 and 7, when the measuring object 2 has surface reflected light in addition to the internal diffused light, therefore, almost any object is set as the measuring object. Even in this case, the color value and the spectral reflectance based on the internal diffused light cannot be measured, and the glossiness based on the surface reflected light cannot be calculated. However, according to the measuring device 1A of the present invention, these are determined. It becomes possible.
【0034】さらに、この計測装置1Aによれば、測定
対象物2の三次元形状の各点における色彩、明度、分光
反射率、光沢、質感等のデータを得ることができ、これ
らのデータをデータベース化したものは、測定対象物の
見え方に関する研究に極めて有用なものとなる。また、
コンピュータグラフィックス技術を用いて、例えば、任
意の照明下における見え方の効果や、屋内と屋外での見
え方の差異等も容易に且つ正確にシミュレーションする
ことが可能となる。Further, according to the measuring device 1A, data such as color, lightness, spectral reflectance, gloss, texture, etc. at each point of the three-dimensional shape of the measuring object 2 can be obtained. The result is extremely useful for research on the appearance of the object to be measured. Also,
By using the computer graphics technology, for example, it is possible to easily and accurately simulate the effect of the appearance under an arbitrary illumination, the difference between the appearances inside and outside, and the like.
【0035】以上、図1、図2に示した計測装置1A及
びそれを用いた計測方法について説明したが、この他、
本発明は種々の態様をとることができる。The measuring apparatus 1A shown in FIGS. 1 and 2 and the measuring method using the same have been described above.
The present invention can take various aspects.
【0036】例えば、上述の計測装置1Aにおけるスリ
ット光投影法のレンジファインダ20に代えて、パター
ン光を投影する方式のレンジファインダを使用してもよ
く、また、光レーダー法やその他種々のレンジファイン
ダを使用してもよい。For example, a range finder that projects pattern light may be used in place of the range finder 20 of the slit light projection method in the above-described measuring apparatus 1A, or an optical radar method or other various range finder. May be used.
【0037】また、上述の計測装置1Aでは、測定対象
物2をセンターテーブル3に固定し、ディジタイザユニ
ット10Aを測定対象物2の周りに回転移動させ、測定
対象物2の計測部位を走査するが、このような計測部位
の走査に代えて、ディジタイザユニット10Aを固定
し、測定対象物2を固定したセンターテーブル3を回転
させ、測定対象物2の全面が計測部位として走査される
ようにしてもよい。また、測定対象物2の三次元形状の
計測と色の計測とを別個に行い、後に双方の計測値が同
期するように双方の計測値を合成してもよい。In the above-described measuring apparatus 1A, the measurement object 2 is fixed to the center table 3, and the digitizer unit 10A is rotated around the measurement object 2 to scan the measurement site of the measurement object 2. Instead of such scanning of the measurement site, the digitizer unit 10A is fixed, and the center table 3 on which the measurement object 2 is fixed is rotated so that the entire surface of the measurement object 2 is scanned as the measurement site. Good. Alternatively, the measurement of the three-dimensional shape and the measurement of the color of the measurement target 2 may be separately performed, and the two measurement values may be combined so that the two measurement values are synchronized later.
【0038】[0038]
【実施例】以下、本発明を実施例に基づいて具体的に説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.
【0039】実施例1及び比較例1 図1及び図2に示した三次元物体の計測装置1Aを作製
した。この場合、レンジファインダ20は、Cyberware
製 Color 3D Digitizer 3030から構成した。Example 1 and Comparative Example 1 A three-dimensional object measuring apparatus 1A shown in FIGS. 1 and 2 was manufactured. In this case, the range finder 20 is
Color 3D Digitizer 3030.
【0040】測色装置40は、光源44として直流型蛍
光灯を使用し、偏光フィルタ45としてPolaroid製 HN3
2を使用した。受光器43としてはカラーCCDカメラ
を使用し、その前面の偏光フィルタ42としてはPolaro
id製 HN32を使用した。The colorimeter 40 uses a DC fluorescent lamp as the light source 44 and Polaroid HN3 as the polarizing filter 45.
2 was used. A color CCD camera is used as the light receiver 43, and Polaro is used as the polarizing filter 42 on the front surface thereof.
HN32 manufactured by id was used.
【0041】測定対象物2としては、メイクアップドー
ル(均一肌色の人形)を使用し、その頭部を測定範囲と
した。また、その測定範囲で鉛直方向及び回転方向から
それぞれ512画素をサンプリングした点を測定点とし
た。As a measurement object 2, a makeup doll (a uniform flesh-colored doll) was used, and its head was used as a measurement range. In addition, points at which 512 pixels were sampled from the vertical direction and the rotation direction in the measurement range were defined as measurement points.
【0042】各測定点について、受光器43により内部
拡散光の出力値RGBを求め、さらにその値を三次元形
状に基づいて照度補正することにより、補正後の値とし
てR'G'B'を求めた。一方、各測定点について、分光
測色器(CM1000,ミノルタ社製)で三刺激値XY
Zを求めた。そして、この計測装置1Aで得たR'G'
B'と分光測色器で得た三刺激値XYZとから前述の式
(I)によりR'G'B'とXYZとの変換マトリクスMを求
め、得られた変換マトリクスMを用いてR'G'B'から
XYZを求め、さらに明度L*求めた。そして、計測装
置1Aで得られた明度と分光測色計で得られた明度との
差の各測定点についての平均(△L*)を求めた(実施
例1)。この結果を図4に示す。For each measurement point, the output value RGB of the internal diffused light is obtained by the light receiver 43, and the value is corrected for illuminance based on the three-dimensional shape, so that R'G'B 'is obtained as a corrected value. I asked. On the other hand, for each measurement point, a tristimulus value XY was measured with a spectral colorimeter (CM1000, manufactured by Minolta).
Z was determined. Then, the R′G ′ obtained by this measuring device 1A
From B ′ and the tristimulus values XYZ obtained by the spectrophotometer,
A conversion matrix M between R'G'B 'and XYZ was obtained by (I), and XYZ was obtained from R'G'B' using the obtained conversion matrix M, and further, lightness L * was obtained. Then, an average (△ L * ) of each difference between the lightness obtained by the measuring device 1A and the lightness obtained by the spectrophotometer was obtained (Example 1). The result is shown in FIG.
【0043】三次元物体の計測装置1Aのレンジファイ
ンダ20を動作させず、測色装置40だけを使用し、測
定対象物2の三次元形状に基づく照度補正をしなかった
ことの他は上述の実施例1と同様にして測定対象物2の
各測定点の明度L*を求め、得られた明度L*と分光測色
器で得られた明度との差の平均(△L*)を求めた(比
較例1)。この結果を図4に示す。Other than that the illuminance correction based on the three-dimensional shape of the measuring object 2 was not performed without using the range finder 20 of the measuring device 1A of the three-dimensional object and using only the color measuring device 40, In the same manner as in Example 1, the lightness L * of each measurement point of the measurement object 2 is obtained, and the average (△ L * ) of the difference between the obtained lightness L * and the lightness obtained by the spectral colorimeter is obtained. (Comparative Example 1). The result is shown in FIG.
【0044】図4から、測定対象物2の三次元形状に基
づいて照度補正をすることにより、得られる明度が、分
光測色器で得られる明度とよく整合することがわかる。FIG. 4 shows that the brightness obtained by performing the illuminance correction based on the three-dimensional shape of the measurement object 2 matches well with the brightness obtained by the spectrocolorimeter.
【0045】実施例2 肌色領域のサンプルとして、色票60枚(マンセル表色
系の色相H=2YR〜8YR、明度V=5〜7、彩度C
=2〜5)を用意し、これを円筒に張り付けたものを測
定対象物2とした。Example 2 As a sample of the skin color area, 60 color patches (Hue H = 2YR to 8YR, lightness V = 5 to 7, color saturation C of Munsell color system)
= 2 to 5) were prepared and attached to a cylinder to obtain a measurement object 2.
【0046】実施例1と同様の計測装置1Aを使用し、
受光器43による各色票の出力値RGBを求め、さらに
その出力値RGBに対して三次元形状に基づく照度補正
をして補正後のR'G'B'を求めた。一方、分光測色器
(CM1000,ミノルタ社製)で各色票の三刺激値X
YZを求めた。そして、計測装置1Aで得たR'G'B'
と分光測色器で得た三刺激値XYZとから前述の式(I)
によりR'G'B'とXYZとの変換マトリクスMを求
め、得られた変換マトリクスMを用いて各色票のR'G'
B'から対応するXYZを求め、さらにこうして求めた
各色票のXYZと分光測色器で求めた各色票のXYZと
から各々のL*a*b*を求め、両者の色差(△E*ab)
を求めた。Using the same measuring device 1A as in the first embodiment,
The output value RGB of each color chart by the light receiver 43 was obtained, and the output value RGB was subjected to illuminance correction based on a three-dimensional shape to obtain corrected R'G'B '. On the other hand, the tristimulus value X of each color chart was measured using a spectrophotometer (CM1000, manufactured by Minolta).
YZ was determined. Then, R'G'B 'obtained by the measuring device 1A
From the tristimulus values XYZ obtained by the spectral colorimeter and the
, A conversion matrix M between R′G′B ′ and XYZ is obtained, and using the obtained conversion matrix M, R′G ′ of each color chart is obtained.
The corresponding XYZ is obtained from B ′, and each L * a * b * is obtained from XYZ of each color chart thus obtained and XYZ of each color chart obtained by the spectrophotometer, and the color difference (△ E * ab) )
I asked.
【0047】この結果を図5に示す。ここで、平均の色
差(△E*ab)は0.60であり、この計測装置1A
によれば分光測色器に極めて近い測色結果の得られるこ
とがわかる。FIG. 5 shows the result. Here, the average color difference (ΔE * ab) is 0.60, and this measuring device 1A
According to the graph, it can be seen that a colorimetric result very close to that of a spectral colorimeter can be obtained.
【0048】実施例3及び比較例2 実施例1と同様の計測装置1Aを使用し、人物顔を測色
対象物2とし、その内部拡散光を遮断して表面反射光の
みからフルカラー円筒投影画像を作成した(実施例
3)。また、この計測装置1Aから偏光照射部41の偏
光フィルタ45及び受光器43の前面の偏光フィルタ4
2をはずしたものを使用して、測定対象物の内部拡散光
と表面反射光の双方からなる画像を形成する以外は実施
例3と同様にして、人物顔のフルカラー円筒投影画像を
作成した(比較例2)。Example 3 and Comparative Example 2 Using a measuring device 1A similar to that of Example 1, a human face was used as a colorimetric object 2, and the internal diffused light was cut off to obtain a full-color cylindrical projection image from only the surface reflected light. Was prepared (Example 3). In addition, the polarization filter 45 of the polarization irradiating section 41 and the polarization filter 4
2, a full-color cylindrical projection image of a person's face was created in the same manner as in Example 3 except that an image consisting of both the internal diffused light and the surface reflected light of the measurement object was formed using the object from which the object 2 was removed. Comparative Example 2).
【0049】得られたフルカラー円筒投影画像につい
て、光沢、毛穴、しわのそれぞれの見分け易さを対比し
た。この結果を表1に示す。The obtained full-color cylindrical projection images were compared with each other for glossiness, pores, and wrinkles. Table 1 shows the results.
【0050】[0050]
【表1】 [Table 1]
【0051】表1から、測定対象物の内部拡散光を遮断
し、表面反射光のみから作成した画像によると、測定対
象物の表面の凹凸形状の現れである光沢、毛穴、しわが
明瞭に観察できることがわかる。From Table 1, according to the image created by blocking the internal diffused light of the object to be measured and only the reflected light from the surface, gloss, pores, and wrinkles, which are the appearance of unevenness on the surface of the object to be measured, are clearly observed. We can see that we can do it.
【0052】[0052]
【発明の効果】本発明によれば、三次元物体の形状と色
を同期させて計測する計測装置において、表面反射光と
内部拡散光とを区別して計測するので、三次元物体の形
状だけでなく色も正確に計測することが可能となる。さ
らに、三次元物体の色彩値、分光反射率を得、また光沢
度を評価することも可能となる。According to the present invention, in a measuring apparatus for measuring the shape and color of a three-dimensional object in synchronization with each other, measurement is performed by distinguishing surface reflected light and internal diffused light. And the color can be measured accurately. Further, it is possible to obtain the color value and the spectral reflectance of the three-dimensional object, and to evaluate the glossiness.
【図1】本発明の三次元物体の計測装置の光学系の説明
図である。FIG. 1 is an explanatory diagram of an optical system of a three-dimensional object measuring apparatus according to the present invention.
【図2】本発明の三次元物体の計測装置の外観図であ
る。FIG. 2 is an external view of a three-dimensional object measuring apparatus according to the present invention.
【図3】本発明の三次元物体の計測装置で形成された画
像の説明図である。FIG. 3 is an explanatory diagram of an image formed by the three-dimensional object measuring device of the present invention.
【図4】実施例及び比較例で計測された明度と分光測色
器で計測された明度との差を示す図である。FIG. 4 is a diagram showing a difference between the brightness measured in the example and the comparative example and the brightness measured by the spectrocolorimeter.
【図5】実施例と分光測色器との色票に対する色差を示
す図である。FIG. 5 is a diagram showing a color difference between the embodiment and a color chart for a spectrocolorimeter.
【図6】従来の三次元物体の計測装置の光学系の説明図
である。FIG. 6 is an explanatory diagram of an optical system of a conventional three-dimensional object measuring device.
【図7】従来の三次元物体の計測装置の外観図である。FIG. 7 is an external view of a conventional three-dimensional object measuring device.
【図8】従来の三次元物体の計測装置で形成された画像
の説明図である。FIG. 8 is an explanatory diagram of an image formed by a conventional three-dimensional object measuring device.
【図9】皮膚Sに自然光が入射した場合の表面反射と内
部反射の説明図である。FIG. 9 is an explanatory diagram of surface reflection and internal reflection when natural light enters the skin S.
1 従来の三次元物体の計測装置 1A 本発明の三次元物体の計測装置 2 測定対象物 3 センターテーブル 10、10A ディジタイザユニット 20 レンジファインダ 21 光源 22 レンズ系 23 白黒CCDカメラ 30 測色装置 31 測色用光源 32 カラーCCDカメラ(カラーTVカメラ) 40 測色装置 41 偏光照射部 42 偏光フィルタ 43 受光器 44 光源 45 偏光フィルタ A ディジタイザユニットの回転方向 L 光 L1 表面反射光 L2 内部拡散光DESCRIPTION OF SYMBOLS 1 Conventional three-dimensional object measuring apparatus 1A Three-dimensional object measuring apparatus of the present invention 2 Object to be measured 3 Center table 10, 10A digitizer unit 20 Range finder 21 Light source 22 Lens system 23 Monochrome CCD camera 30 Colorimeter 31 Colorimetry Light source 32 Color CCD camera (color TV camera) 40 Colorimeter 41 Polarization irradiator 42 Polarization filter 43 Light receiver 44 Light source 45 Polarization filter A Rotating direction of digitizer unit L Light L 1 Surface reflected light L 2 Internal diffused light
フロントページの続き (51)Int.Cl.6 識別記号 FI G06T 7/00 A61B 5/10 300B 1/00 300Q G06F 15/62 415 15/64 M 320C 15/66 310 15/70 310 Continuation of the front page (51) Int.Cl. 6 Identification code FI G06T 7/00 A61B 5/10 300B 1/00 300Q G06F 15/62 415 15/64 M 320C 15/66 310 15/70 310
Claims (5)
を同期させて行う三次元物体の計測方法において、測色
用照射光に偏光を使用し、その偏光の測定対象物からの
反射光を偏光フィルタを通して受光することにより、測
定対象物の測色を内部拡散光又は表面反射光に基づいて
行うことを特徴とする三次元物体の計測方法。1. A method for measuring a three-dimensional object in which a measurement of a three-dimensional shape of a measurement object and a color measurement are performed in synchronization with each other. A method for measuring a three-dimensional object, wherein colorimetry of an object to be measured is performed based on internal diffused light or surface reflected light by receiving reflected light through a polarizing filter.
それぞれ使用する光源及び測定対象物からの反射光を受
光する受光器を、測定対象物に対して同時に移動させ、
測定対象物の三次元形状の計測部位と測色部位とを同時
に走査することにより三次元形状の計測と測色とを同期
させる請求項1記載の三次元物体の計測方法。2. A light source for use in measurement and colorimetry of a three-dimensional shape of a measurement object and a light receiving device for receiving reflected light from the measurement object are simultaneously moved with respect to the measurement object,
The method for measuring a three-dimensional object according to claim 1, wherein the measurement of the three-dimensional shape and the colorimetry are synchronized by simultaneously scanning the measurement part and the colorimetry part of the three-dimensional shape of the measurement object.
を、偏光フィルタを通してカラーCCDカメラで受光
し、内部拡散光の測色値としてRGB値を出力するか、
該RGB値を、測定対象物の三次元形状に基づいて照度
補正し、照度補正後のRGB値に基づいて三刺激値XY
Z、色彩値L*a*b*もしくは色彩値L*u*v*を出力す
るか、又は照度補正後のRGB値に基づいて主成分分析
法により算出した分光反射率を出力する請求項1又は2
記載の三次元物体の計測方法。3. A method of receiving reflected light from a measurement object of polarized light through a polarizing filter by a color CCD camera and outputting RGB values as colorimetric values of internal diffused light.
The RGB values are corrected for illuminance based on the three-dimensional shape of the measurement object, and the tristimulus values XY are calculated based on the corrected RGB values.
2. The method according to claim 1, further comprising: outputting Z, a color value L * a * b * or a color value L * u * v * , or outputting a spectral reflectance calculated by a principal component analysis method based on the RGB values after illuminance correction. Or 2
The method for measuring a three-dimensional object according to the description.
り、互いの計測値を同期させて出力する三次元物体の計
測装置において、測色装置が、測定対象物に偏光を照射
する偏光照射部、その偏光の測定対象物からの反射光を
偏光フィルタを通して受光する受光器からなり、受光器
で検出された偏光の検出値に基づいて、測定対象物の内
部拡散光又は表面反射光の計測値を出力することを特徴
とする三次元物体の計測装置。4. A three-dimensional object measuring device comprising a three-dimensional shape measuring device and a color measuring device and outputting the measured values in synchronization with each other, wherein the color measuring device irradiates polarized light to the object to be measured. An irradiating unit, comprising a light receiver that receives reflected light of the polarized light from the object to be measured through a polarizing filter, and based on the detected value of the polarized light detected by the light receiver, the internal diffused light or the surface reflected light of the object to be measured. An apparatus for measuring a three-dimensional object, which outputs a measured value.
ぞれ形成する光源及び測定対象物からの反射光を受光す
る受光器が、測定対象物に対して同時に移動し、測定対
象物の三次元形状の計測部位と測色部位とを同時に走査
することにより三次元形状の計測と測色とを同期させる
請求項4記載の三次元物体の計測装置。5. A light source forming a three-dimensional shape measuring device and a colorimetric device, and a light receiver for receiving reflected light from the measuring object are simultaneously moved with respect to the measuring object, and a third order of the measuring object is measured. The three-dimensional object measurement apparatus according to claim 4, wherein the measurement of the three-dimensional object and the colorimetry are synchronized by simultaneously scanning the measurement part and the colorimetry part of the original shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10138054A JPH11326057A (en) | 1998-05-20 | 1998-05-20 | Method and apparatus for measuring a three-dimensional object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10138054A JPH11326057A (en) | 1998-05-20 | 1998-05-20 | Method and apparatus for measuring a three-dimensional object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11326057A true JPH11326057A (en) | 1999-11-26 |
Family
ID=15212914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10138054A Pending JPH11326057A (en) | 1998-05-20 | 1998-05-20 | Method and apparatus for measuring a three-dimensional object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11326057A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243468A (en) * | 1999-12-24 | 2001-09-07 | Sanyo Electric Co Ltd | Three-dimensional modeling device, method and medium, and tertiary shape data recording device, method and medium |
JP2002035007A (en) * | 2000-04-05 | 2002-02-05 | Brainlab Ag | Referrence and record of patient or body part of patient in medical navigation system by irradiation of optical point |
JP2002123837A (en) * | 2000-08-30 | 2002-04-26 | Microsoft Corp | Method and system for animating feature of face, and method and system for expression transformation |
JP2002133446A (en) * | 2000-08-30 | 2002-05-10 | Microsoft Corp | Face image processing method and system |
JP2003061936A (en) * | 2001-08-27 | 2003-03-04 | Sanyo Electric Co Ltd | Moving three-dimensional model formation apparatus and method |
US6760116B2 (en) * | 2001-12-07 | 2004-07-06 | Brother Kogyo Kabushiki Kaisha | Three-dimensional shape and color detecting apparatus |
JP2004321793A (en) * | 2003-04-29 | 2004-11-18 | Inforward Inc | Method and system for computational analysis of skin image |
WO2005072609A1 (en) * | 2004-02-02 | 2005-08-11 | Inforward, Inc. | Face photographing device |
WO2009008040A1 (en) * | 2007-07-06 | 2009-01-15 | Meguro, Inc. | Method of detecting image of part showing minute difference in light reflected from living body, device for specifying site showing minute difference in light reflected from living body, and device for treating part showing minute difference in light reflected from living body |
JP2009020080A (en) * | 2007-07-13 | 2009-01-29 | Kao Corp | Surface reflection characteristic measuring device |
JP2011149952A (en) * | 2011-03-10 | 2011-08-04 | Sanyo Electric Co Ltd | Model input device and model generation system |
WO2013175595A1 (en) * | 2012-05-23 | 2013-11-28 | パイオニア株式会社 | 3d-face-measurement device, control method, program, and recording medium |
WO2014027523A1 (en) * | 2012-08-17 | 2014-02-20 | ソニー株式会社 | Image-processing device, image-processing method, program and image-processing system |
JP2016093511A (en) * | 2009-06-03 | 2016-05-26 | ケアストリーム ヘルス インク | Intraoral imaging apparatus |
-
1998
- 1998-05-20 JP JP10138054A patent/JPH11326057A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243468A (en) * | 1999-12-24 | 2001-09-07 | Sanyo Electric Co Ltd | Three-dimensional modeling device, method and medium, and tertiary shape data recording device, method and medium |
JP2002035007A (en) * | 2000-04-05 | 2002-02-05 | Brainlab Ag | Referrence and record of patient or body part of patient in medical navigation system by irradiation of optical point |
JP4733318B2 (en) * | 2000-08-30 | 2011-07-27 | マイクロソフト コーポレーション | Method and system for animating facial features and method and system for facial expression transformation |
JP2002123837A (en) * | 2000-08-30 | 2002-04-26 | Microsoft Corp | Method and system for animating feature of face, and method and system for expression transformation |
JP2002133446A (en) * | 2000-08-30 | 2002-05-10 | Microsoft Corp | Face image processing method and system |
JP2011170891A (en) * | 2000-08-30 | 2011-09-01 | Microsoft Corp | Facial image processing method and system |
JP2003061936A (en) * | 2001-08-27 | 2003-03-04 | Sanyo Electric Co Ltd | Moving three-dimensional model formation apparatus and method |
US6760116B2 (en) * | 2001-12-07 | 2004-07-06 | Brother Kogyo Kabushiki Kaisha | Three-dimensional shape and color detecting apparatus |
US6927862B2 (en) | 2001-12-07 | 2005-08-09 | Brother Kogyo Kabushiki Kaisha | Three-dimensional shape and color detecting apparatus |
JP4485837B2 (en) * | 2003-04-29 | 2010-06-23 | 澁谷工業株式会社 | Method and system for computer analysis of skin images |
JP2004321793A (en) * | 2003-04-29 | 2004-11-18 | Inforward Inc | Method and system for computational analysis of skin image |
JP2005211581A (en) * | 2004-02-02 | 2005-08-11 | Inforward Inc | Face photographing device |
WO2005072609A1 (en) * | 2004-02-02 | 2005-08-11 | Inforward, Inc. | Face photographing device |
WO2009008040A1 (en) * | 2007-07-06 | 2009-01-15 | Meguro, Inc. | Method of detecting image of part showing minute difference in light reflected from living body, device for specifying site showing minute difference in light reflected from living body, and device for treating part showing minute difference in light reflected from living body |
JP2009020080A (en) * | 2007-07-13 | 2009-01-29 | Kao Corp | Surface reflection characteristic measuring device |
JP2016093511A (en) * | 2009-06-03 | 2016-05-26 | ケアストリーム ヘルス インク | Intraoral imaging apparatus |
JP2011149952A (en) * | 2011-03-10 | 2011-08-04 | Sanyo Electric Co Ltd | Model input device and model generation system |
JPWO2013175595A1 (en) * | 2012-05-23 | 2016-01-12 | パイオニア株式会社 | Three-dimensional face measurement device, control method, program, and storage medium |
WO2013175595A1 (en) * | 2012-05-23 | 2013-11-28 | パイオニア株式会社 | 3d-face-measurement device, control method, program, and recording medium |
WO2014027523A1 (en) * | 2012-08-17 | 2014-02-20 | ソニー株式会社 | Image-processing device, image-processing method, program and image-processing system |
CN104540444A (en) * | 2012-08-17 | 2015-04-22 | 索尼公司 | Image-processing device, image-processing method, program and image-processing system |
US9727969B2 (en) | 2012-08-17 | 2017-08-08 | Sony Corporation | Image processing device, image processing method, program, and image processing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4017363B2 (en) | Surface inspection apparatus and method | |
JP6254826B2 (en) | Camera system, color conversion apparatus and method used therefor, and color conversion program | |
US7995838B2 (en) | Color chart processing apparatus, color chart processing method, and color chart processing program | |
CA2371628C (en) | Method and apparatus for determining the appearance of an object | |
JPH11326057A (en) | Method and apparatus for measuring a three-dimensional object | |
US7064830B2 (en) | Dental color imaging system | |
US8315692B2 (en) | Multi-spectral imaging spectrometer for early detection of skin cancer | |
US7884968B2 (en) | System for capturing graphical images using hyperspectral illumination | |
KR20050026009A (en) | Image processing system | |
JP4421071B2 (en) | Makeup counseling device | |
JP2005181038A (en) | Reflective characteristic measuring apparatus, high color reproduction design system using it, and reflective characteristic measuring method | |
JP2000009440A (en) | Method and device for measuring 3-dimensional object | |
JP6948407B2 (en) | Equipment and methods for determining surface topology and associated colors | |
JP2003024283A (en) | Skin surface state observing apparatus | |
JP4987045B2 (en) | Color chart processing apparatus, color chart processing method, and color chart processing program | |
JP2004506187A (en) | Color matching system | |
JP2000193527A (en) | Method for forming three-dimensional simulation image | |
JP4532781B2 (en) | Thin hair area evaluation method and system, and thin hair positioning plate | |
Yang et al. | An imaging colorimeter for noncontact skin color measurement | |
JP2022006624A (en) | Calibration device, calibration method, calibration program, spectroscopic camera, and information processing device | |
Komiya et al. | Natural color reproduction system for telemedicine and its application to digital camera | |
JP4277032B2 (en) | Color chart processing apparatus, color chart processing method, and color chart processing program | |
JP2000004938A (en) | Spectrosensor | |
Lin | Development of a Method to Measure Skin Tone Using a Hyperspectral Camera | |
Slembrouck et al. | Design of a Snapshot Hyperspectral Gonioradiometer for Appearance Characterization |