US10358859B2 - System and method for inhibiting automatic movement of a barrier - Google Patents

System and method for inhibiting automatic movement of a barrier Download PDF

Info

Publication number
US10358859B2
US10358859B2 US15/791,063 US201715791063A US10358859B2 US 10358859 B2 US10358859 B2 US 10358859B2 US 201715791063 A US201715791063 A US 201715791063A US 10358859 B2 US10358859 B2 US 10358859B2
Authority
US
United States
Prior art keywords
barrier
vehicle
movement path
control signal
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/791,063
Other versions
US20190048639A1 (en
Inventor
Brian K. Lickfelt
Kentaro Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US15/791,063 priority Critical patent/US10358859B2/en
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LICKFELT, BRIAN K., YOSHIMURA, KENTARO
Priority to US15/884,730 priority patent/US10557299B2/en
Publication of US20190048639A1 publication Critical patent/US20190048639A1/en
Application granted granted Critical
Publication of US10358859B2 publication Critical patent/US10358859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/77Power-operated mechanisms for wings with automatic actuation using wireless control
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/02Small garages, e.g. for one or two cars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • G01S17/026
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • G07C9/00007
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2827Reporting to a device within the home network; wherein the reception of the information reported automatically triggers the execution of a home appliance functionality
    • H04L12/2829Reporting to a device within the home network; wherein the reception of the information reported automatically triggers the execution of a home appliance functionality involving user profiles according to which the execution of a home appliance functionality is automatically triggered
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/668Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F2015/763Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using acoustical sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F2015/767Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using cameras
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/45Control modes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/81Feedback to user, e.g. tactile
    • E05Y2400/818Visual
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/40Physical or chemical protection
    • E05Y2800/424Physical or chemical protection against unintended use, e.g. protection against vandalism or sabotage
    • E05Y2800/426Physical or chemical protection against unintended use, e.g. protection against vandalism or sabotage against unauthorised use, e.g. keys
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/40Application of doors, windows, wings or fittings thereof for gates
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00896Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses
    • G07C2009/00928Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses for garage doors

Definitions

  • movable barriers such as entrance gates and garage doors may be mechanically operated to open or close as a vehicle is arriving towards a barrier or departing away from the barrier.
  • the vehicle may be located in an area capable of communicating via radio frequency communication with a controller of the barrier in order to actuate the opening or closing of the barrier without the driver of the vehicle being able to view a movement path (e.g., opening path or closing path) of the barrier to determine if an individual or object is located within the movement path.
  • a movement path e.g., opening path or closing path
  • the opening of the barrier such an entrance gate may be actuated before a driver has an opportunity to observe if an individual or object is obstructing the opening path of the gate.
  • the closing of the barrier such as garage door may be actuated even if an individual or object may obstruct the closing path of the garage door.
  • a computer-implemented method for inhibiting automatic movement of a barrier that includes determining a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier. The method also includes analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier. At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier. The method additionally includes inhibiting a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier. The method further includes presenting a user interface alert relating to inhibiting the automatic movement of the barrier.
  • a system for inhibiting automatic movement of a barrier that includes a memory storing instructions when executed by a processor cause the processor to determine a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier.
  • the instructions also cause the processor to analyze sensor data to determine if at least one: individual or object is located within a movement path of the barrier.
  • At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier.
  • the instructions additionally cause the processor to inhibit a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier.
  • the instructions further cause the processor to present a user interface alert relating to inhibiting the automatic movement of the barrier.
  • a computer readable storage medium storing instructions that when executed by a computer, which includes at least a processor, causes the computer to perform a method that includes determining a current state of a barrier when a vehicle travels through at least one first zone associated with the barrier.
  • the instructions also include analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier.
  • At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier.
  • the instructions additionally include inhibiting a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier.
  • the instructions further include presenting a user interface alert relating to inhibiting the automatic movement of the barrier.
  • FIG. 1 is a schematic view of an operating environment for implementing systems and methods within a vehicle for inhibiting automatic movement of a movable barrier according to an exemplary embodiment
  • FIG. 2 is an illustrative example of a plurality of zones associated with the barrier that may be applied when the vehicle is determined to be arriving towards the barrier according to an exemplary embodiment
  • FIG. 3 is an illustrative example of a plurality of zones associated with the barrier that may be applied when the vehicle is determined to be departing away from the barrier according to an exemplary embodiment
  • FIG. 4A is a process flow diagram of a method for inhibiting or providing automatic movement of the barrier when the vehicle is determined to be arriving towards the barrier according to an exemplary embodiment
  • FIG. 4B is an illustrative example of a scenario in which the barrier control application may inhibit sending of at least one barrier control signal during the arrival of the vehicle towards the barrier according to an exemplary embodiment
  • FIG. 5A is a process flow diagram of a method for inhibiting or providing automatic movement of the barrier when the vehicle is determined to be departing away from the barrier according to an exemplary embodiment
  • FIG. 5B is an illustrative example of a scenario in which the barrier control application may inhibit sending of at least one barrier control signal during the departure of the vehicle away from the barrier according to an exemplary embodiment
  • FIG. 6 is an illustrative example of the barrier movement inhibition alert presented on the display unit of the vehicle according to an exemplary embodiment.
  • FIG. 7 is a process flow diagram of a method for inhibiting automatic movement of the barrier according to an exemplary embodiment.
  • a “bus”, as used herein, refers to an interconnected architecture that is operably connected to other computer components inside a computer or between computers.
  • the bus can transfer data between the computer components.
  • the bus can be a memory bus, a memory controller, a peripheral bus, an external bus, a crossbar switch, and/or a local bus, among others.
  • the bus can also be a vehicle bus that interconnects components inside a vehicle using protocols such as Media Oriented Systems Transport (MOST), Controller Area network (CAN), Local Interconnect Network (LIN), among others.
  • MOST Media Oriented Systems Transport
  • CAN Controller Area network
  • LIN Local Interconnect Network
  • Computer communication refers to a communication between two or more computing devices (e.g., computer, personal digital assistant, cellular telephone, network device) and can be, for example, a network transfer, a file transfer, an applet transfer, an email, a hypertext transfer protocol (HTTP) transfer, and so on.
  • computing devices e.g., computer, personal digital assistant, cellular telephone, network device
  • HTTP hypertext transfer protocol
  • a computer communication can occur across, for example, a wireless system (e.g., IEEE 802.11), a Bluetooth® communication system, a radio frequency communication system (e.g., LF radio frequency), an Ethernet system (e.g., IEEE 802.3), a token ring system (e.g., IEEE 802.5), a local area network (LAN), a wide area network (WAN), a point-to-point system, a circuit switching system, a packet switching system, among others.
  • a wireless system e.g., IEEE 802.11
  • a Bluetooth® communication system e.g., LF radio frequency
  • an Ethernet system e.g., IEEE 802.3
  • a token ring system e.g., IEEE 802.5
  • LAN local area network
  • WAN wide area network
  • point-to-point system e.g., a circuit switching system
  • packet switching system e.g., packet switching system, among others.
  • a “disk”, as used herein can be, for example, a magnetic disk drive, a solid state disk drive, a floppy disk drive, a tape drive, a Zip drive, a flash memory card, and/or a memory stick.
  • the disk can be a CD-ROM (compact disk ROM), a CD recordable drive (CD-R drive), a CD rewritable drive (CD-RW drive), and/or a digital video ROM drive (DVD ROM).
  • the disk can store an operating system that controls or allocates resources of a computing device.
  • a “database”, as used herein can refer to table, a set of tables, a set of data stores and/or methods for accessing and/or manipulating those data stores. Some databases can be incorporated with a disk as defined above.
  • a “memory”, as used herein can include volatile memory and/or non-volatile memory.
  • Non-volatile memory can include, for example, ROM (read only memory), PROM (programmable read only memory), EPROM (erasable PROM), and EEPROM (electrically erasable PROM).
  • Volatile memory can include, for example, RAM (random access memory), synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and direct RAM bus RAM (DRRAM).
  • the memory can store an operating system that controls or allocates resources of a computing device.
  • a “module”, as used herein, includes, but is not limited to, non-transitory computer readable medium that stores instructions, instructions in execution on a machine, hardware, firmware, software in execution on a machine, and/or combinations of each to perform a function(s) or an action(s), and/or to cause a function or action from another module, method, and/or system.
  • a module may also include logic, a software controlled microprocessor, a discrete logic circuit, an analog circuit, a digital circuit, a programmed logic device, a memory device containing executing instructions, logic gates, a combination of gates, and/or other circuit components. Multiple modules may be combined into one module and single modules may be distributed among multiple modules.
  • An “operable connection”, or a connection by which entities are “operably connected”, is one in which signals, physical communications, and/or logical communications can be sent and/or received.
  • An operable connection can include a wireless interface, a physical interface, a data interface and/or an electrical interface.
  • the processor can be a variety of various processors including multiple single and multicore processors and co-processors and other multiple single and multicore processor and co-processor architectures.
  • the processor can include various modules to execute various functions.
  • a “portable device”, as used herein, is a computing device typically having a display screen with user input (e.g., touch, keyboard) and a processor for computing.
  • Portable devices include, but are not limited to, handheld devices, mobile devices, smart phones, laptops, tablets and e-readers.
  • a “portable device” could refer to a remote device that includes a processor for computing and/or a communication interface for receiving and transmitting data remotely.
  • a “vehicle”, as used herein, refers to any moving vehicle that is capable of carrying one or more human occupants and is powered by any form of energy.
  • vehicle includes, but is not limited to: cars, trucks, vans, minivans, SUVs, motorcycles, scooters, boats, go-karts, amusement ride cars, rail transport, personal watercraft, and aircraft.
  • a motor vehicle includes one or more engines.
  • vehicle can refer to an electric vehicle (EV) that is capable of carrying one or more human occupants and is powered entirely or partially by one or more electric motors powered by an electric battery.
  • the EV can include battery electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV).
  • vehicle can also refer to an autonomous vehicle and/or self-driving vehicle powered by any form of energy.
  • the autonomous vehicle may or may not carry one or more human occupants.
  • vehicle can include vehicles that are automated or non-automated with pre-determined paths or free-moving vehicles.
  • a “value” and “level”, as used herein can include, but is not limited to, a numerical or other kind of value or level such as a percentage, a non-numerical value, a discrete state, a discrete value, a continuous value, among others.
  • value of X or “level of X” as used throughout this detailed description and in the claims refers to any numerical or other kind of value for distinguishing between two or more states of X.
  • the value or level of X may be given as a percentage between 0% and 100%.
  • the value or level of X could be a value in the range between 1 and 10.
  • the value or level of X may not be a numerical value, but could be associated with a given discrete state, such as “not X”, “slightly x”, “x”, “very x” and “extremely x”.
  • FIG. 1 is a schematic view of an operating environment 100 for implementing systems and methods within a vehicle 102 for inhibiting automatic movement of a movable barrier (barrier) 104 according to an exemplary embodiment.
  • the components of the environment 100 as well as the components of other systems, hardware architectures, and software architectures discussed herein, can be combined, omitted, or organized into different architectures for various embodiments.
  • the environment includes a barrier movement control application (barrier control application) 106 that is executed to automatically control the movement of the barrier 104 that may include, but may not be limited to a garage door, a gate (e.g., one or more entry or exit gate doorways), a door (e.g., a residential door), etc., based on a current state (e.g., opened state or closed state) of the barrier 104 from a vehicle 102 based on a current location of the vehicle 102 , traveling direction of the vehicle 102 and/or current opened or closed state of the barrier 104 .
  • a barrier movement control application carrier control application
  • the barrier control application 106 may determine the (traveling or parking) location of the vehicle 102 , the vehicle 102 is either arriving towards a location at which the barrier 104 is located (arriving towards the barrier 104 ) or departing away from the location at which the barrier 104 is located (departing away from the barrier 104 ), and the like.
  • the barrier control application 106 may be used to determine one or more zones associated with the barrier 104 that may be applied by the application 106 to send one or more types of signals to a barrier controller 108 based on one or more factors.
  • the one or more types of signals may be used to determine a current state of the barrier 104 , to send a command to traverse the barrier 104 to the opened state (e.g., to fully open the barrier 104 ), traverse the barrier 104 to the closed state (e.g., to fully close the barrier 104 ).
  • the barrier control application 106 may operate to inhibit the automatic sending of the one or more types of signals to traverse the barrier 104 to the opened or closed state based on the detection of one or more individuals or objects that are located within a movement path of the barrier 104 (e.g., opening path or closing path of the barrier 104 ).
  • the barrier control application 106 may operate to ensure that the barrier 104 such as an entrance/exit gate or garage door is not automatically moved to open or close the barrier 104 to traverse the barrier 104 when the individual(s) or object(s) is detected within the space that is occupied by the barrier 104 as it is opened or closed otherwise described as movement path of the barrier 104 .
  • the application 106 may ensure that automatic opening of an entrance gate that may occur upon the arrival of the vehicle 102 towards the entrance gate is inhibited when an object (e.g., other vehicle) is detected to be located within the space that is occupied by the barrier 104 as it is opened.
  • the barrier control application 106 may operate to ensure that the barrier 104 such as a garage door is not automatically closed upon the departure of the vehicle 102 from the barrier 104 when an individual or object is detected within the movement path of the barrier 104 .
  • the application 106 may ensure that automatic closure of the garage door that may occur when the vehicle 102 departs from the barrier 104 is inhibited when an object is detected to be located within the space that is occupied by the barrier 104 as it's closed in a downward direction.
  • the barrier control application 106 may present a barrier movement inhibition alert (illustrated in FIG. 6 ) that may provide a user (e.g., driver of the vehicle 102 ) with an alert regarding the inhibiting of the automatic movement of the barrier 104 as vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104 .
  • the barrier movement inhibition alert may also present the current status of the barrier 104 as an opened state, a partially opened state, or a closed state. More specifically, the barrier movement inhibition alert may present the current state of the barrier 104 as the opened state when the barrier 104 is stationary and within a fully opened state.
  • the barrier movement inhibition alert may present the current state of the barrier 104 as the closed state when the barrier 104 is stationary and within a fully closed state. Additionally, the barrier movement inhibition alert may present the real time status of the barrier 104 as the partially opened state that may indicate an opening level (e.g., percentage) of the barrier 104 as it is stationary or in movement to complete the process of being opened or closed. The barrier movement inhibition alert may also provide the user with a user input that may be utilized to manually send one or more signals to move the barrier 104 upon inhibiting the automatic sending of the signal(s).
  • an opening level e.g., percentage
  • the vehicle 102 may include a plurality of components that may be operably connected for computing communication via a bus (not shown) (e.g., a Controller Area Network (CAN) or a Local Interconnect Network (LIN) protocol bus), an input/output interface (I/O interface) and/or other wired and wireless technologies.
  • the plurality of components of the vehicle 102 may generally include an electronic control unit (ECU) 110 , a head unit 112 , a display unit 114 , a storage unit 116 , and a telematics control unit (TCU) 120 .
  • the plurality of components of the vehicle 102 may also include a plurality of vehicle systems 122 and a plurality of vehicle sensors 124 that are utilized to detect the presence of at least one individual or at least one object located within the movement path of the barrier 104 .
  • the ECU 110 of the vehicle 102 may include a processor (not shown), a memory (not shown), a disk (not shown), and an input/output (I/O) interface (not shown), which are each operably connected for computer communication via a bus (not shown).
  • the I/O interface provides software and hardware to facilitate data input and output between the components of the ECU 110 and other components, networks, and data sources, of the environment 100 .
  • the ECU 110 may execute one or more operating systems, applications, and/or interfaces that are associated with the vehicle 102 and/or the plurality of vehicle systems 122 .
  • the ECU 110 may execute the barrier control application 106 when a battery/accessory state of the vehicle 102 is enabled.
  • the barrier control application 106 may include components (discussed in more detail below) that may send commands to the components of the vehicle 102 and/or to components external to the vehicle 102 that include but are not limited to the barrier controller 108 operably connected to the barrier 104 .
  • the ECU 110 may utilize sensor data provided by the plurality of vehicle sensors 124 to detect the at least one individual and/or the at least one object that is located within the movement path of the barrier 104 .
  • one or more components of the application 106 may receive and analyze various types of sensor data provided by the plurality of vehicle sensors 124 to detect at least one individual or at least one object to further inhibit the sending of the one or more barrier control signals to move the barrier 104 to the opened state or the closed state.
  • the plurality of vehicle sensors 124 of the vehicle 102 may include the image sensors 134 , RADAR/LADAR sensors 136 , and vehicle dynamics sensors 138 .
  • the image sensors 134 may include a plurality of external and internal cameras that may include, but may not be limited to, an infrared camera, a digital camera, a stereo camera, a video camera (camera types not individually shown), and the like that may be mounted at one or more areas outside of and/or inside of the vehicle 102 .
  • the image sensors 134 may include a plurality of cameras (not shown) that may be mounted at one or more external and interior locations of the vehicle 102 that may include, but may not be limited to, one or more bumpers (not shown), one or more external or internal light fixtures of the vehicle 102 , a dashboard of the vehicle 102 , a ceiling panel of the vehicle 102 , side mirrors of the vehicle 102 , a rear view mirror of the vehicle 102 , side panels of the vehicle 102 , one or more door/door handles of the vehicle 102 , (all external and interior locations not individually shown) and the like.
  • the image sensors 134 may be configured to provide a 360 degree stereoscopic view of the surrounding environment of the vehicle 102 .
  • the image sensors 134 may be configured to combine image pixels that correspond to the one or more points in a physical scene observed by the plurality of cameras.
  • the image sensors 134 may provide image sensor data that includes a sequence of images/video that may pertain to an exterior environment of the vehicle 102 .
  • the barrier control application 106 may communicate with the image sensors 134 to receive the image data as the vehicle 102 is within an image capturing distance of the barrier 104 .
  • the barrier control application 106 may utilize logic to analyze the one or more images of the barrier 104 to detect if the at least one individual and/or the at least one object is located within the movement path of the barrier 104 .
  • the RADAR/LADAR sensors 136 of the plurality of vehicle sensors 124 may include, but may not be limited to, a millimeter wave radar, a laser detection and range sensor, an infrared sensor, a thermal sensor, and the like. Various alternate or additional hardware devices will be apparent for inclusion as the RADAR/LADAR sensors 136 .
  • the RADAR/LADAR sensors 136 may be disposed at one or more areas of the vehicle 102 that may include a front bumper, door panels, vehicle mirrors, a rear bumper, a roof, a floorboard, (areas of the vehicle 102 not individually shown) and the like.
  • the RADAR/LADAR sensors 136 may provide the barrier control application 106 with sensor wave data pertaining to sensing at least one obstacle that may exist within the movement path of the barrier 104 .
  • the barrier control application 106 may communicate with the RADAR/LADAR sensors 136 to receive the sensor wave data that pertains to the movement path of the barrier 104 as it is moved to the opened state and/or the closed state.
  • the barrier control application 106 may utilize logic to analyze the sensor wave data pertaining to the space to detect if the at least one individual and/or the at least one object is located within the movement path of the barrier 104 .
  • the vehicle dynamics sensors 138 may communicate with one or more components of the vehicle 102 that may include the ECU 110 , an engine (not shown), a transmission (not shown), brakes (not shown), the plurality of vehicle systems 122 , and the like to determine vehicle dynamics information.
  • the vehicle dynamics information may be evaluated by the barrier control application 106 to evaluate vehicle engine operation, vehicle speed, vehicle braking, vehicle steering, engine RPM, etc.
  • the head unit 112 may include internal processing memory, an interface circuit, and bus lines (components of the head unit not shown) for transferring data, sending commands, and communicating with the components of the vehicle 102 directly and/or through the ECU 110 .
  • the ECU 110 may execute one or more operating systems, applications, and/or interfaces that are associated to the vehicle 102 , the plurality of vehicle systems 122 .
  • the head unit 112 may be connected to an infotainment system 118 .
  • the infotainment system 118 may act as an information hub of the vehicle 102 that presents and delivers information to the user (e.g., audio, video, HVAC, barrier controls, etc.),
  • the infotainment system 118 may be operably connected to a barrier control system 130 of the vehicle 102 to send and receive data signals that may be utilized to remotely control the barrier 104 .
  • the infotainment system 118 may also be utilized to provide the barrier status user interface to the user through a display unit 114 operably connected to the infotainment system 118 .
  • the display unit 114 may be disposed within a center stack area of the vehicle 102 . Based on the operation of the infotainment system 118 , the display unit 114 may display one or more vehicle human machine interfaces (vehicle HMI) to provide the driver of the vehicle 102 with various types of information and/or to receive one or more inputs from the driver of the vehicle 102 . More specifically, the vehicle HMI may pertain to one or more operating systems, vehicle system interfaces, and application interfaces, including interfaces pertaining to the barrier control application 106 . For example, the vehicle HMI may present one or more user interfaces of the barrier control application 106 including a barrier configuration user interface (not shown) and the barrier movement inhibition alert.
  • vehicle HMI vehicle human machine interfaces
  • the vehicle HMI may present one or more user interfaces of the barrier control application 106 including a barrier configuration user interface (not shown) and the barrier movement inhibition alert.
  • the infotainment system 118 may communicate with one or more additional display units (not shown) within the vehicle 102 that may include, but may not be limited to, a meter display and a head up display that may additionally or alternatively present the vehicle HMI.
  • the head unit 112 may be operably connected to one or more notification devices (not shown) within the vehicle 102 . More particularly, the head unit 112 may communicate with one or more haptic devices (not shown) (e.g., haptic steering wheel, haptic seats, haptic gear shifter) audio devices (not shown) (e.g., audio system, speakers), etc. that may also be used to provide the barrier movement inhibition alert relating to inhibiting the automatic movement of the barrier 104 based on the detection of the at least one individual or object. In other words, the head unit 112 may provide such notifications independent of the operation of the infotainment system 118 .
  • haptic devices e.g., haptic steering wheel, haptic seats, haptic gear shifter
  • audio devices not shown
  • the head unit 112 may provide such notifications independent of the operation of the infotainment system 118 .
  • the vehicle 102 may additionally include a storage unit 116 .
  • the storage unit 116 may store one or more operating systems, applications, associated operating system data, application data, vehicle system and subsystem user interface data, and the like that are executed by the ECU 110 , the head unit 112 , and the plurality of vehicle systems 122 .
  • the storage unit 116 may include one or more barrier profiles that are respectively associated to one or more barriers based on user inputs. As discussed in more detail below, the barrier profile(s) may be created, populated and/or updated by the barrier control application 106 .
  • a respective barrier profile may include details that are associated with the barrier 104 as identified by the user and/or determined based on vehicle sensors 124 .
  • the details may include a barrier type assigned to the barrier 104 (e.g., entrance gate, exit gate, garage door), a name assigned to the barrier 104 by the user (e.g., primary garage door, main gate), a geo-location associated with the barrier 104 (e.g., GPS, DGPS coordinates of the location of the barrier 104 ), and a plurality of global positioning coordinates associated with respective boundaries of one or more zones associated with the barrier 104 that are utilized by the application 106 .
  • a barrier type assigned to the barrier 104 e.g., entrance gate, exit gate, garage door
  • a name assigned to the barrier 104 by the user e.g., primary garage door, main gate
  • a geo-location associated with the barrier 104 e.g., GPS, DGPS coordinates of the location of the barrier 104
  • the barrier profiles may additionally include geo-locations associated with one or more sensing locations that are determined based on the capability of the image sensors 134 to capture images of a full expanse of the movement path of barrier 104 and/or the capability of the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier 104 .
  • the one or more sensing locations may be evaluated and updated within the barrier profiles each time the vehicle 102 arrives towards the barrier 104 or departs away from the barrier 104 .
  • the barrier profile(s) may be created, populated, updated, and/or evaluated to retrieve data based on the execution of the barrier control application 106 .
  • the TCU 120 of the vehicle 102 may be utilized as an external interface for mobile communication between the vehicle 102 and an internet cloud communication network (internet cloud) 126 to send and retrieve data stored on one or more external devices.
  • the one or more external devices may include an external server infrastructure 144 that is accessible to provide data to the TCU 120 .
  • the TCU 120 may be configured to connect to a GSM, GPRS, Wi-Fi, WiMax, or LTE wireless connection to send and receive one or more data files through the internet cloud 126 to/from the external server infrastructure 144 .
  • the TCU 120 may also include a microcontroller (not shown) that controls the processes of the TCU 120 and a storage (not shown) that may include various types of memory to temporarily store data that are provided to/from the components of the vehicle 102 .
  • the external server infrastructure 144 may include a plurality of interconnected servers that support and maintain data that can be sent to the TCU 120 and may be further utilized by one or more components of the vehicle 102 .
  • the external server infrastructure 144 may include but is not limited to web servers, data servers, database servers, domain controllers, backup servers, and the like.
  • the external server infrastructure 144 may include a barrier controller data repository (not shown) that includes the current status of the barrier 104 that may be used by the application 106 .
  • the barrier controller 108 may access the internet cloud 126 (e.g., through a Wi-Fi connection) to update and store the (updated) current status of the barrier 104 .
  • the barrier control application 106 may utilize the TCU 120 to communicate with the internet cloud 126 to access the external server infrastructure 144 to communicate the barrier movement inhibition alert to the external server infrastructure 144 .
  • one or more portable devices may be utilized to present the barrier status user interface to present the user with the barrier movement inhibition alert to alert the user that the barrier 104 is inhibited from being automatically opened and/or closed based on the detection of the at least one individual and/or at least one object.
  • the barrier 104 may include barrier image sensors 146 that may be disposed near the barrier 104 to capture images of the moving path of the barrier 104 .
  • the barrier image sensors may include one or more cameras, that may include, but are not limited to, infrared cameras, digital cameras, stereo cameras, video cameras that are directed towards the movement path of the barrier 104 to capture one or more images of the moving path of the barrier 104 .
  • the barrier image data provided by the barrier image sensors 146 may be uploaded directly to the external server infrastructure 144 to be accessed by the barrier control application 106 via the TCU 120 of the vehicle 102 .
  • the plurality of vehicle systems 122 may include, but may not be limited to, a vehicle communication system 128 , the barrier control system 130 , and a navigation system 132 .
  • the vehicle communication system 128 may include one or more transceivers that are capable of providing wireless computer communications utilizing various protocols to be utilized to send/receive electronic signals internally to components and systems within the vehicle 102 and to external devices including a transceiver 140 operably connected to a barrier controller 108 associated with the barrier 104 .
  • the vehicle communication system 128 may be capable of providing wired or wireless computer communications utilizing various protocols to send/receive non-transitory signals internally to the plurality of components of the vehicle 102 and/or externally to external devices.
  • these protocols include a wireless system (e.g., IEEE 802.11 (WiFi), IEEE 802.15.1 (Bluetooth)), a near field communication system (NFC) (e.g., ISO 13157), a local area network (LAN), and/or a point-to-point system.
  • the vehicle communication system 128 may be utilized by the barrier control application 106 to send (i.e., transmit) one or more radio frequency (RF) signals in one or more frequencies and/or radio bands to communicate commands and data to the barrier controller 108 through the transceiver 140 .
  • the vehicle communication system 128 may communicate the one or more command signals that include but are not limited to, at least one barrier status request signal and possibly at least one barrier control signal to the transceiver 140 when the movement path of the barrier 104 is determined to be clear (i.e., individual(s) and/or object(s) are not determined to be within the movement path) based on the execution of the application 106 .
  • the barrier control application 106 may utilize the vehicle communication system 128 to send the one or more status request signals to be evaluated by the barrier controller 108 .
  • barrier controller 108 may determine the current state of the barrier 104 as the opened state, the partially opened state, or the closed state and may communicate the current state in the form of one or more barrier response signals.
  • the vehicle communication system 128 may be utilized to receive the one or more barrier response data signals sent from the transceiver 140 including, but not limited to, at least one barrier status signal that are initiated by the barrier controller 108 to be interpreted by the barrier control application 106 .
  • the barrier control application 106 may further utilize data provided by the image sensors 134 and/or the RADAR/LADAR sensors 136 to detect if at least one individual and/or the at least one object is located within the movement path of the barrier 104 . If the application 106 determines that the movement path of the barrier 104 is clear, the vehicle communication system 128 may send the one or more barrier control signals to remotely control movement of the barrier 104 (e.g., actuate movement of the barrier 104 to open or close) based on the determination of the current state of the barrier 104 (as determined based on the evaluation of the one or more barrier response signals provided by the barrier controller 108 ).
  • the vehicle communication system 128 may send the one or more barrier control signals to remotely control movement of the barrier 104 (e.g., actuate movement of the barrier 104 to open or close) based on the determination of the current state of the barrier 104 (as determined based on the evaluation of the one or more barrier response signals provided by the barrier controller 108 ).
  • the barrier control system 130 of the vehicle 102 may be utilized to provide manual or automatic commands to the vehicle communication system 128 through the infotainment system 118 .
  • the barrier control system 130 may utilize the vehicle communication system 128 to send the one or more barrier control signals to actuate movement of the barrier 104 to open or close the barrier 104 based on one or more user inputs.
  • the barrier control system 130 may be included as part of a HOMELINK® trainable garage door opening device (or other embedded, integrated accessory of the vehicle 102 ) that is integrated within a ceiling panel (not shown) or rearview mirror (not shown) of the vehicle 102 .
  • the barrier control system 130 may include one or more input buttons (not shown) that may be inputted by the user to actuate movement of the barrier 104 .
  • the navigation system 132 may be connected to the head unit 112 , the infotainment system 118 , and the display unit 114 to provide a map user interface (not shown) to the driver of the vehicle 102 .
  • the navigation system 132 may include a global position system 132 a (GPS) that may also be used to localize (i.e., determine the GPS or DGPS coordinates) the vehicle 102 .
  • GPS global position system
  • the navigation system 132 may include its own processor and memory that communicate with the GPS 132 a to determine and provide route guidance to the driver of the vehicle 102 .
  • the navigation system 132 may include and/or may connect to and access a map database 132 b to present one or more details and graphics on the map user interface through the display unit 114 .
  • the map database 132 b may include geographical maps of one or more locations (e.g., countries, regions, cities) in which the vehicle 102 may be driven.
  • the map database 132 b may also include locational data that pertains to the barrier 104 .
  • the barrier control application 106 may utilize the navigation system 132 to localize the barrier 104 and to determine a plurality of global positioning coordinates associated with one or more areas that are located within the surrounding area of the barrier 104 .
  • the plurality of global positioning coordinates associated with the one or more areas may constitute boundaries of the one or more zones associated with the barrier 104 .
  • the barrier 104 may be connected to and controlled by the barrier controller 108 .
  • the barrier controller 108 may include internal processing memory, an interface circuit, and bus lines for transferring data, sending commands, and communicating with the components associated with and/or connected to the barrier 104 .
  • the barrier controller 108 may be connected to a remote control (e.g., garage door remote) (not shown) and an interface device (e.g., wall inputs, numeric key pad) (not shown) that may be used by the user to provide one or more inputs to control movement of the barrier 104 .
  • a remote control e.g., garage door remote
  • an interface device e.g., wall inputs, numeric key pad
  • the barrier controller 108 may be operably connected to the transceiver 140 .
  • the barrier controller 108 may be configured to control operation of the transceiver 140 to receive the one or more command signals from the vehicle communication system 128 .
  • the barrier controller 108 may be configured to control operation of the transceiver 140 to send (e.g., transmit) one or more response signals to the vehicle communication system 128 .
  • the barrier controller 108 may evaluate the one or more data signals received by the transceiver 140 and may instruct the transceiver 140 to send the one or more response data signals.
  • the barrier controller 108 may also be operably connected to a Wi-Fi antenna 142 .
  • the Wi-Fi antenna 142 may be utilized as an external interface for mobile communication between the barrier controller 108 and the internet cloud 126 to send and retrieve data stored on the external server infrastructure 144 to store data within the barrier controller data repository.
  • the Wi-Fi antenna 142 may be configured to connect to Wi-Fi, WiMax, GSM, GPRS, or LTE wireless connection to send and receive one or more data files through the internet cloud 126 to/from the external server infrastructure 144 .
  • the barrier controller 108 may send a command to the Wi-Fi antenna 142 to communicate with the internet cloud 126 to access the external server infrastructure 144 to store the current status of the barrier 104 as determined by the barrier controller 108 .
  • the barrier controller 108 may be operably connected to the barrier image sensors 146 .
  • the barrier image sensors 146 may be disposed near to the barrier 104 to capture one or more images of the moving path of the barrier 104 .
  • the barrier image sensors 146 may provide barrier image data to the barrier controller 108 .
  • the barrier controller 108 may utilize the WI-FI antenna to communicate the barrier image data to be stored on the external server infrastructure 144 .
  • the barrier control application 106 may utilize the TCU 120 to communicate with the external server infrastructure 144 over the internet cloud 126 to access the barrier image data by the application 106 .
  • the barrier image data may analyzed along with the sensor data provided by the vehicle sensors 124 to detect if at least one individual and/or at least one object located within the moving path of the barrier 104 .
  • the barrier control application 106 may be stored on the storage unit 116 of the vehicle 102 .
  • the barrier control application 106 may be stored on the external server infrastructure 144 and may be accessed by the TCU 120 to be executed by the ECU 110 and/or the head unit 112 of the vehicle 102 .
  • the barrier control application 106 may be executed when a battery/accessory state of the vehicle 102 is enabled. Therefore, the vehicle 102 (e.g., engine) does not have to be fully enabled for the ECU 110 or the head unit 112 to execute the barrier control application 106 .
  • the barrier control application 106 may include a location determinant module 148 , a zone determinant module 150 , a barrier status determinant module 152 , a barrier control module 154 , and a barrier status presentation module 156 . It is to be appreciated that the barrier control application 106 may include additional modules and/or sub-modules that are configured to execute one or more functions of the application 106 . As will be described in more detail below, the location determinant module 148 may be utilized to determine the location of the vehicle 102 with respect to the (location of) the barrier 104 . The zone determinant module 150 may determine a plurality of zones that are utilized to send one or more signals between the vehicle communication system 128 and the transceiver 140 .
  • the barrier status determinant module 152 may be utilized to access sensor data from the vehicle sensors 124 and barrier image data from the external server infrastructure 144 and analyze the data to detect if at least one individual or at least one object is located within the movement path of the barrier 104 to inhibit automatic movement of the barrier 104 .
  • the barrier status determinant module 152 may additionally determine the status of the barrier 104 as the opened state, the partially opened state, or the closed state and may communicate the current status of the barrier 104 to the barrier status presentation module 156 .
  • the barrier control module 154 may be utilized to remotely control the movement of the barrier 104 to traverse the barrier 104 to the opened state, the closed state, or the partially opened state based on the current status of the barrier 104 when the movement path of the barrier 104 is detected to be clear (i.e., no individuals or objects are detected within the movement path of the barrier 104 ). Further, the barrier status presentation module 156 may receive data from the barrier status determinant module 152 and/or the barrier control module 154 and may communicate with the infotainment system 118 and may present the barrier movement inhibition alert when the at least one individual and/or the at least one object is detected within the movement path of the barrier 104 .
  • the user may create the barrier profile associated with the barrier 104 .
  • the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the geo-location associated with the barrier 104 .
  • the geo-location associated with the barrier 104 may be used to determine if the vehicle 102 is being driven and is arriving towards the barrier 104 (i.e., the geo-location associated with the barrier 104 ).
  • the geo-location associated with the barrier 104 may also be used to determine if the vehicle 102 is being driven and is departing away from the barrier 104 (i.e., the geo-location associated with the barrier 104 ).
  • the geo-location associated with the barrier 104 may additionally be used to determine if the vehicle 102 is located (e.g., parked) within a predetermined distance of the barrier 104 that may include the area enclosed by the barrier 104 .
  • the user may input a user interface icon (not shown) via the vehicle HMI presented on the display unit 114 to create the barrier profile associated with the barrier 104 .
  • the driver of the vehicle 102 may wish to create the barrier profile that is associated to the barrier 104 (e.g., garage door) located at the driver's home to enable the application 106 to communicate with the barrier controller 108 (e.g., garage door opener) associated with the barrier 104 .
  • the barrier control application 106 may store the barrier profile on the storage unit 116 of the vehicle 102 .
  • a respective indication may be communicated to the location determinant module 148 indicating that the user has setup the barrier profile associated with the barrier 104 .
  • the location determinant module 148 may present a barrier location determination user interface (not shown) to the user.
  • the barrier location determination user interface may be utilized by the user to actuate the determination of the geo-location of the barrier 104 when the vehicle 102 is located within the area enclosed by the barrier 104 .
  • the barrier location determination user interface may include a user interface object(s) that may be inputted by the user to indicate that the vehicle 102 is within the area enclosed by the barrier 104 to enable the zone determinant module 150 to determine the geo-location of the barrier 104 .
  • the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the geo-location of the barrier 104 .
  • the navigation system 132 may access the GPS 132 a to determine locational coordinates associated with the location of the vehicle 102 .
  • the navigation system 132 may further access the map database 130 a to determine if a highlighted location that may include a dwelling/building that includes the barrier 104 is located within a predetermined proximity of the vehicle 102 (i.e., of the locational coordinates associated with the location of the vehicle 102 as determined by the GPS 132 a ).
  • the highlighted location may be indicative of a home location saved by the user via the map user interface, a point of interest presented on the map interface, and/or a physical address that is included within the map database 130 a.
  • the location determinant module 148 may ask the user (via the barrier location determination user interface) if the user wishes to interpret the highlighted location as the geo-location associated with the barrier 104 . If the user does wish to interpret the highlighted location as the geo-location associated with the barrier 104 , the location determinant module 148 may access the barrier profile and populate the locational coordinates associated with the highlighted location as the geo-location associated with the barrier 104 .
  • the user may utilize the map user interface of the navigation system 132 to input a saved location that may be utilized by the application 106 as the location of the barrier 104 .
  • a saved location may be utilized by the application 106 as the location of the barrier 104 .
  • the user may input a home location as a saved location on the map user interface.
  • the user may additionally utilize the barrier configuration user interface to input the saved location as the location of the barrier 104 .
  • the location determinant module 148 may communicate with the navigation system 132 to determine the geo-location of the barrier 104 based on the saved location.
  • the location determinant module 148 may further access the barrier profile stored on the storage unit 116 and may populate the locational coordinates associated with the saved location as the geo-location associated with the barrier 104 .
  • the stored geo-location may be used by the application 106 to determine if the vehicle 102 is located within a predetermined vicinity of the barrier 104 , if the vehicle 102 is located within the area enclosed by the barrier 104 , if the vehicle 102 is arriving towards the barrier 104 , or if the vehicle 102 is departing away from the barrier 104 . Additionally, the stored geo-location may be used by the application 106 to determine the one or more zones associated with the barrier 104 utilized by the application 106 to send one or more signals to the barrier controller 108 based on the location and/or a traveling direction of the vehicle 102 with respect to the barrier 104 .
  • the location determinant module 148 may also be utilized to determine the location and/or the traveling direction of the vehicle 102 with respect to the barrier 104 .
  • the location determinant module 148 may determine if the vehicle 102 is located within the area enclosed by the barrier 104 (e.g., a garage), the vehicle 102 is located within the predetermined vicinity of the barrier 104 (e.g., 10 m from the barrier), the vehicle 102 is arriving toward the barrier 104 (e.g., vehicle 102 is being driven to the home where the barrier 104 is located), or the vehicle 102 is departing from the barrier 104 (e.g., vehicle 102 is being driven away from the home where the barrier 104 is located).
  • the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the locational coordinates associated with the (location of the) vehicle 102 .
  • the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a.
  • the location determinant module 148 may also access the barrier profile stored on the storage unit 116 to retrieve the geo-location associated with the barrier 104 .
  • the location determinant module 148 may communicate with the navigation system 132 to determine if the vehicle 102 is within a predetermined distance (e.g., within a 0-200 yards) of the geo-location associated with the barrier 104 .
  • the location determinant module 148 may communicate with the navigation system 132 to further determine if the locational coordinates associated with the vehicle 102 match (e.g., within a predetermined GPS geo-fence threshold that may encompass portions of the area enclosed by the barrier 104 ) the geo-location associated with the barrier 104 .
  • the navigation system 132 may communicate respective data to the location determinant module 148 .
  • the location determinant module 148 may determine that the vehicle 102 is located within the area enclosed by the barrier 104 and may communicate the location of the vehicle 102 to the other modules 148 - 156 of the application 106 .
  • the navigation system 132 may communicate respective data to the location determinant module 148 .
  • the location determinant module 148 may determine that the vehicle 102 is located within the predetermined vicinity of the barrier 104 and may communicate the location of the vehicle 102 to the other modules 148 - 156 of the application 106 .
  • the location determinant module 148 may determine when the vehicle 102 is arriving towards the barrier 104 or departing from the barrier 104 based on the stored geo-location of the barrier 104 . In particular, when the location determinant module 148 determines that the vehicle 102 is not located within the area enclosed by the barrier 104 or within the predetermined vicinity of the barrier 104 , but that the vehicle 102 is located within the predetermined distance of the geo-location associated with the barrier 104 , the location determinant module 148 may communicate with the vehicle dynamics sensors 138 to determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven).
  • the vehicle dynamics sensors 138 may determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven).
  • the location determinant module 148 may communicate with the navigation system 132 to utilize the GPS 132 a and the map database 132 b to evaluate if the vehicle 102 is being driven away from geo-location associated with the barrier 104 . If the navigation system 132 determines that a distance between the locational coordinates of the vehicle 102 , as provided by the GPS 132 a and the geo-location of the barrier 104 are increasing, the navigation system 132 may communicate respective data to the location determinant module 148 . The location determinant module 148 may determine that the vehicle 102 is departing away from the barrier 104 and may communicate the location and traveling direction of the vehicle 102 to the other modules 148 - 154 of the application 106 .
  • the location determinant module 148 may communicate with the vehicle dynamics sensors 138 to determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven). If it is determined that the vehicle 102 is enabled and is moving, the location determinant module 148 may communicate with the navigation system 132 to determine if the vehicle 102 is located within an additional predetermined distance (e.g., 1 mile) of the geo-location associated with the barrier 104 and if the vehicle 102 is arriving towards the barrier 104 .
  • the vehicle dynamics sensors 138 determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven). If it is determined that the vehicle 102 is enabled and is moving, the location determinant module 148 may communicate with the navigation system 132 to determine if the vehicle 102 is located within an additional predetermined distance (e.g., 1 mile) of the geo-location associated with the barrier 104 and if the vehicle 102 is
  • the navigation system 132 may utilize the GPS 132 a and the map database 132 b to evaluate if the vehicle 102 is being driven towards the geo-location associated with the barrier 104 . If the navigation system 132 determines that a distance between the locational coordinates of the vehicle 102 , as provided by the GPS 132 a and the geo-location of the barrier 104 is decreasing, the navigation system 132 may communicate respective data to the location determinant module 148 . The location determinant module 148 may determine that the vehicle 102 is arriving towards the barrier 104 and may communicate the location and traveling direction of the vehicle 102 to the other modules 148 - 156 of the application 106 .
  • the image sensors 134 , and the RADAR/LADAR sensors 136 may make one or more sensor based determinations that pertain to the full expanse of the movement path of the barrier 104 at one or more geo-locations.
  • one or more geo-locations may be utilized as sensing locations that are applied during the arrival of the vehicle 102 towards the barrier 104 to sense and determine if at least one object and/or at least one individual is located within the movement path of the barrier 104 .
  • one or more geo-locations may be utilized as sensing locations that are applied during the departure of the vehicle 102 from the barrier 104 to sense and determine if at least one individual and/or object is located within the movement path of the barrier 104 . More specifically, the sensing locations may be determined based on the capability of the image sensors 134 to capture images of the full expanse of the movement path of barrier 104 and/or the capability of the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier 104 .
  • respective (e.g., separate) sensing locations may be applied by the location determinant module 148 that are applicable when the vehicle 102 is arriving towards the barrier 104 and when the vehicle 102 is departing away from the barrier 104 .
  • the sensing locations may be determined by the location determinant module 148 based on foremost locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may initially sense a full expanse of the movement path of the barrier 104 as the vehicle 102 arrives towards the barrier 104 or departs away from the barrier 104 .
  • the sensing locations may be respectively provided at geo-locations that are located a certain distance from the barrier 104 at which the image sensors 134 are capable of capturing and providing stereoscopic images of the full expanse of the movement path of the barrier 104 when the vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104 .
  • the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the moving path of the barrier 104 may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 may be able to sense obstacles within the full expanse of the movement path of the barrier 104 .
  • the aggregation of geo-locations may be made to determine sensing locations that are based collectively on image data and sensor wave data that are respectively applicable during the arrival of the vehicle 102 towards the barrier 104 and during the departure of the vehicle 102 away from the barrier 104 .
  • the image sensors 134 and the RADAR/LADAR sensors 136 may additionally determine attributes related to the barrier 104 and the surrounding environment of the barrier 104 , hereinafter referred to as barrier attributes.
  • the barrier attributes may include, but may not be limited to, a moving direction of the barrier 104 that may include an upward/downward movement, inward/outward movement, as the barrier 104 is traversed to the opened state or the closed state, and data pertaining to the driveways/roads leading up to the barrier 104 (e.g., slope of the driveway leading up to and at the movement path of the barrier 104 ).
  • the location determinant module 148 may continually populate the data pertaining to the sensing locations within the barrier profile associated with the barrier 104 and stored on the storage unit 116 . Additionally, the location determinant module 148 may populate the barrier attributes within the barrier profile associated with the barrier 104 to be utilized by the barrier control application 106 . In some embodiments, the barrier status determinant module 152 may access the barrier attributes from the barrier profile to more accurately evaluate sensor data provided by the vehicle sensors 124 to detect the presence of at least one individual and/or at least one object that is located within the movement path of the barrier 104 .
  • the zone determinant module 150 of the barrier control application 106 may provide a plurality of zones associated with the barrier 104 .
  • the plurality of zones may include plurality of areas located at a plurality of distances from the barrier 104 and may be provided at specific locations based on the sensing locations utilized during the arrival or departure of the vehicle 102 .
  • the plurality of zones may be used to trigger the sending (e.g., transmission) of RF signals by the vehicle communication system 128 to the transceiver 140 operably connected to the barrier controller 108 .
  • one or more specific zones of the plurality of zones may be associated with the barrier 104 and utilized to send one or more specific signals from the barrier status determinant module 152 or the barrier control module 154 (via the vehicle communication system 128 ) to the barrier controller 108 (via the transceiver 140 ) when the vehicle 102 is determined to be arriving towards the barrier 104 and entering the zone(s).
  • one or more specific zones of the plurality of zones may be associated with the barrier 104 and utilized to send one or more specific signals from the barrier status determinant module 152 or the barrier control module 154 to the barrier controller 108 when the vehicle 102 is determined to be departing away from the barrier 104 and exiting the zone(s).
  • the plurality of zones may be specifically associated with the location and/or traveling direction of the vehicle 102 as communicated by the location determinant module 148 when it is determined that the vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104 , as discussed above.
  • the barrier status determinant module 152 may utilize the vehicle communication system 128 to send (e.g., transmit) at least one status request signal to the barrier controller 108 to determine the state of the barrier 104 .
  • the barrier status determinant module 152 may also analyze sensor data provided by the vehicle sensor 124 upon determining that the vehicle 102 is within a sensing distance of the barrier 104 to determine if the individual(s) and/or object(s) is located within the movement path of the barrier 104 .
  • the barrier control module 154 may automatically send at least one barrier control signal to the barrier controller 108 to actuate the automatic movement of the barrier 104 to traverse the barrier 104 to the opened state or the closed state based on the traveling direction of the vehicle 102 .
  • FIG. 2 is an illustrative example of the plurality of zones associated with the barrier 104 that may be applied when the vehicle 102 is determined to be arriving towards the barrier 104 according to an exemplary embodiment.
  • a boundary 202 a of an arrival status zone 202 b may be determined by the zone determinant module 150 and may be provided as an RF communication trigger point for the barrier status determinant module 152 to utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals (e.g., RF signals) to the transceiver 140 to be evaluated by the barrier controller 108 .
  • a boundary 202 a of an arrival status zone 202 b may be determined by the zone determinant module 150 and may be provided as an RF communication trigger point for the barrier status determinant module 152 to utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals (e.g., RF signals) to the transceiver 140 to be evaluated by the barrier controller 108 .
  • a boundary 206 a of a barrier opening zone 206 b may be determined by the zone determinant module 150 and may be provided as an automatic trigger point for the barrier control system 130 to send the barrier control signal(s) to the barrier 104 to automatically move the barrier 104 .
  • the zone determinant module 150 may communicate with the image sensors 134 and the RADAR/LADAR sensors 136 to determine specific sensing locations 204 within the predetermined vicinity of the barrier 104 as the vehicle 102 is arriving towards the barrier 104 .
  • the sensing locations 204 may be determined based on foremost locations during the arrival of the vehicle 102 towards the barrier 104 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may sense the full expanse movement path of the barrier 104 .
  • the sensing locations 204 may be provided at a furthest distance from the barrier 104 at which the image sensors 134 are capable of capturing and providing stereoscopic images of the movement path of the barrier 104 .
  • the sensing locations 204 may be provided at a furthest distance from the barrier 104 at which the RADAR/LADAR sensors 136 are able to send and receive radar waves/light pulses and sense obstacles within the full expanse of the movement path that may be used to determine if individual(s) and/or object(s) may be located within the movement path of the barrier 104 .
  • the zone determinant module 150 may determine the location at which to provide the boundary 202 a of the arrival status zone 202 b as a location that ensures that the sensing locations 204 are located within the arrival status zone 202 b to accordingly determine if at least one individual and/or at least one object is located within the moving path of the barrier 104 at an earliest possible point in time with respect to the vehicle 102 approaching the barrier 104 . More particularly, the location of the boundary 202 a of the arrival status zone 202 b may be provided for the barrier status determinant module 152 to have an adequate amount of time to inhibit sending of the barrier control signal before the vehicle 102 enters the barrier opening zone 206 b.
  • the zone determinant module 150 may take into account the location at which the vehicle 102 may transmit and receive RF signals to successfully communicate with the barrier controller 108 at an earliest point in time to determine the current state of the barrier 104 . This functionality may ensure that the barrier control signal(s) is sent to traverse the barrier 104 to the opened state as the vehicle 102 approaches the barrier 104 upon determining that the moving path of the barrier 104 is clear without requiring the vehicle 102 to stop and wait for the barrier 104 to fully traverse to the opened state.
  • the zone determinant module 150 may store a plurality of GPS coordinates associated with the boundary 202 a of the arrival status zone 202 b. In one or more embodiments, the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 202 a of the arrival status zone 202 b. Upon determining the plurality of GPS coordinates associated with the portions of the boundary 202 a , the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150 .
  • the plurality of GPS coordinates e.g., latitude x, longitude y
  • the zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 202 a of the arrival status zone 202 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the status request signal(s) to the barrier controller 108 upon the vehicle 102 entering the arrival status zone 202 b during the arrival of the vehicle 102 towards the barrier 104 .
  • the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 204 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the movement path of the barrier 104 . As the vehicle 102 continues to travel and arrive towards the barrier 104 , the location determinant module 148 may communicate with the barrier status determinant module 152 when the vehicle 102 reaches one of the sensing locations 204 .
  • the barrier status determinant module 152 may responsively communicate with the image sensors 134 and/or the RADA/LADAR sensors 136 to receive image data and/or sensor wave data and may analyze the data to determine if the individual(s) and/or the object(s) is located within the movement path of the barrier 104 . Consequently, the barrier status determinant module 152 may inhibit the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 enters the barrier opening zone 206 b or may allow the sending of the barrier control signal(s) when the vehicle 102 enters the barrier opening zone 206 b based on if the individual(s) and/or object(s) are determined to be located within the movement path of the barrier 104 .
  • the zone determinant module 150 may determine the barrier opening zone 206 b at a determined distance from the barrier 104 .
  • the size of the barrier opening zone 206 b may be based on one or more variables that ensures that the boundary 206 a of the barrier opening zone 206 b may be provided at a determined adequate distance from the sensing locations 204 and the barrier 104 for the application 106 to inhibit or allow the sending of the barrier control signal(s) to traverse the barrier 104 to the opened state as the vehicle 102 approaches the barrier 104 .
  • the zone determinant module 150 may determine the boundary 206 a of the barrier opening zone 206 b at a determined adequate distance (e.g., 50 m) from the boundary 202 a of the arrival status zone 202 b and the determined adequate distance (e.g., 30 m) from the sensing locations 204 .
  • a determined adequate distance e.g. 50 m
  • the vehicle 102 upon sending the status request signal(s) to determine the status of the barrier 104 , the vehicle 102 will travel the determined adequate distances and the vehicle sensors 124 will sense the movement path of the barrier 104 to be analyzed as the vehicle 102 continues to travel toward the barrier 104 before possibly sending the barrier control signal(s) when the vehicle 102 enters the barrier opening zone 206 b.
  • the zone determinant module 150 may analyze data pertaining to the surrounding environment of the vehicle 102 provided by the map database 132 b and may also determine the barrier opening zone 206 b according to one or more environmental variables.
  • the one or more environmental variables may include, but are not limited to, the length of the street(s) 208 within the vicinity of the barrier 104 , the length of the driveway(s) 210 leading up to the barrier 104 , the location of the surrounding structures/object(s) within the vicinity of the barrier 104 , and the like.
  • the zone determinant module 150 may determine the size of the barrier opening zone 206 b to ensure that the barrier control signal(s) may be transmitted to the transceiver 140 at a time that the vehicle 102 is at a requisite distance from the barrier 104 . This functionality may ensure that upon determining that the movement path of the barrier 104 is clear, the barrier control signal(s) are sent at an appropriate time to fully open the barrier 104 upon the arrival of the vehicle 102 towards the barrier 104 without compromising the security of contents located behind the barrier 104 .
  • the barrier opening zone 206 b may include a smaller area surrounding the barrier 104 than a scenario where the barrier 104 is located closer to the street 208 .
  • the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 206 a of the barrier opening zone 206 b .
  • the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150 .
  • the zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 206 a of the barrier opening zone 206 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the barrier control signal(s) to the barrier controller 108 upon the vehicle 102 entering the barrier opening zone 206 b during the arrival of the vehicle 102 towards the barrier 104 .
  • the zone determinant module 150 may determine multiple respective arrival status zones and barrier opening zones that may be utilized for multiple barriers. Additionally, multiple sensing locations may be applied by the location determinant module 148 that may be utilized with respect to multiple barriers. For example, if the home of the user includes a gate as a first barrier and a garage door as a second barrier, the location determinant module 148 may determine sensing locations specifically pertaining to the gate and sensing locations specifically pertaining to the garage door as the vehicle 102 arrives towards the gate and the garage door. Additionally, the zone determinant module 150 may determine an arrival status zone pertaining to the gate and a separate arriving barrier status zone pertaining to the garage door. The zone determinant module 150 may further determine a barrier opening zone pertaining to the gate and a separate barrier opening zone pertaining to the garage door.
  • FIG. 3 is an illustrative example of the plurality of zones associated with the barrier 104 that may be applied when the vehicle 102 is determined to be departing away from the barrier 104 according to an exemplary embodiment.
  • a departure status zone 302 b may be determined by the zone determinant module 150 and may be provided as an RF communication trigger point for the barrier status determinant module 152 to utilize the vehicle communication system 128 to send at least one status request signal to the transceiver 140 to be evaluated by the barrier controller 108 .
  • a boundary 306 a of a barrier closing zone 306 b may be determined by the zone determinant module 150 and may be provided as an automatic trigger point for the barrier control system 130 to send the barrier control signal(s) to the barrier 104 to automatically move the barrier 104 .
  • the vehicle 102 may exit the departure status zone 302 b by crossing a boundary 302 a of the departure status zone 302 b .
  • the barrier status determinant module 152 may utilize the vehicle communication system 128 to determine the current status of the barrier 104 .
  • the current status of the barrier 104 may be used to determine if the barrier control module 154 may send the barrier control signal(s) to traverse the barrier 104 to the closed state upon the vehicle 102 exiting a barrier closing zone 306 b if it is determined that the movement path of the barrier 104 is clear.
  • the zone determinant module 150 may determine the location and size of the departure status zone 302 b according to sensing locations 304 that are determined within the predetermined vicinity of the barrier 104 . In one embodiment, upon determining the current status of the barrier 104 , as the vehicle 102 continues to travel away from the barrier 104 , the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 304 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of sensing the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104 .
  • the location determinant module 148 may communicate with the barrier status determinant module 152 when the vehicle 102 reaches one of the sensing locations 304 .
  • the barrier status determinant module 152 may responsively communicate with the image sensors 134 and/or the RADA/LADAR sensors 136 to receive image data and/or sensor wave data and may analyze the data to determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may inhibit the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 exits the barrier closing zone 306 b or may allow the sending of the barrier control signal(s) when the vehicle 102 exits the barrier closing zone 306 b based on if the individual(s) and/or object(s) are determined to be located within the movement path of the barrier 104 .
  • the zone determinant module 150 may determine the location at which to provide the boundary 302 a of the departure status zone 302 b as a location that ensures that the sensing locations 304 are located within the departure status zone 302 b to accordingly determine if the individual(s) and/or object(s) are located within the moving path of the barrier 104 at an earliest possible point in time before the vehicle 102 enters the barrier closing zone 306 b. More particularly, the location of the boundary 302 a of the departure status zone 302 b may be provided for the barrier status determinant module 152 to have an adequate amount of time to inhibit sending of the barrier control signal before the vehicle 102 exits the barrier closing zone 306 b.
  • the zone determinant module 150 may also take into account the location at which the vehicle 102 may determine the current status of the barrier 104 at a requisite time to determine if the movement path of the barrier 104 is clear to allow or inhibit the sending of the barrier control signal(s) as the vehicle 102 departs away from the barrier 104 .
  • the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 402 a of the departure status zone 302 b.
  • the plurality of GPS coordinates e.g., latitude x, longitude y
  • the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150 .
  • the zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 302 a of the departure status zone 302 b.
  • the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the status request signal(s) to the barrier controller 108 upon the vehicle 102 exiting the departure status zone 302 b during the departure of the vehicle 102 away from the barrier 104 .
  • the zone determinant module 150 may additionally determine the barrier closing zone 306 b at a determined distance from the barrier 104 and the sensing locations 304 .
  • the size of the barrier closing zone 306 b may be based on one or more variables that ensures that the boundary 306 a of the barrier closing zone 306 b may be provided at a determined adequate distance from the sensing locations 204 and the barrier 104 for the application 106 to allow or inhibit the sending of the barrier control signal(s) to traverse the barrier 104 to the closed state before the vehicle 102 is out of a RF communication range with the barrier controller 108 .
  • the zone determinant module 150 may determine that the boundary 306 a of the barrier closing zone 306 b is to be provided at a determined adequate distance (e.g., 50 m) from the boundary 302 a of the departure status zone 302 b and the determined adequate distance (e.g., 30 m) from the sensing locations 304 .
  • a determined adequate distance e.g. 50 m
  • the determined adequate distance e.g. 30 m
  • the vehicle 102 upon sending the status request signal(s) to determine the status of the barrier 104 , the vehicle 102 will travel the determined adequate distances and the vehicle sensors 124 will sense the movement path of the barrier 104 to be analyzed as the vehicle 102 continues to travel away from the barrier 104 before possibly sending the barrier control signal(s) when the vehicle 102 exits the barrier closing zone 306 b or inhibiting the sending of the barrier control signal(s).
  • the zone determinant module 150 may analyze data pertaining to the surrounding environment of the vehicle 102 provided by the map database 132 b and may also determine the barrier closing zone 306 b according to one or more environmental variables. For instance, the zone determinant module 150 may analyze the length of the street(s) 308 within the vicinity of the barrier 104 , the length of the driveway(s) 310 leading up to the barrier 104 , the location of the surrounding structures/object(s) within the vicinity of the barrier 104 , and the like.
  • the zone determinant module 150 may determine the size of the barrier closing zone 306 b to ensure that the barrier control signal(s) may be transmitted to the transceiver 140 at a time that the vehicle 102 is at a requisite distance from the barrier 104 . This functionality may ensure that upon determining that the movement path of the barrier 104 is clear, the barrier control signal(s) are sent at an appropriate time to fully close the barrier 104 during the departure of the vehicle 102 away from the barrier 104 before the vehicle communication system 128 is out of RF communication range with the transceiver 140 .
  • the barrier closing zone 306 b may include a smaller area surrounding the barrier 104 than a scenario where the barrier 104 is located at an end of a short driveway 310 .
  • the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 306 a of the barrier closing zone 306 b.
  • the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150 .
  • the zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 306 a of the barrier closing zone 306 b.
  • the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the barrier control signal(s) to the barrier controller 108 upon the vehicle 102 exiting the barrier closing zone 306 b during departure of the vehicle 102 away from the barrier 104 .
  • the zone determinant module 150 may determine multiple respective departure status zones and barrier closing zones that may be utilized for multiple barriers. Additionally, multiple sensing locations may be applied by the location determinant module 148 that may be utilized with respect to multiple barriers. For example, if the home of the user includes a gate as a first barrier and a garage door as a second barrier, the location determinant module 148 may determine sensing locations specifically pertaining to the gate and sensing locations specifically pertaining to the garage door as the vehicle 102 departs from the garage door and the gate. Additionally, the zone determinant module 150 may determine a departure status zone pertaining to the gate and a separate departure status zone pertaining to the garage door. The zone determinant module 150 may further determine a barrier closing zone pertaining to the gate and a separate barrier closing zone pertaining to the garage door.
  • FIG. 4A is a process flow diagram of a method 400 for inhibiting or providing automatic movement of the barrier 104 when the vehicle 102 is determined to be arriving towards the barrier 104 according to an exemplary embodiment.
  • FIG. 4A will be described with reference to the components of FIG. 1 though it is to be appreciated that the method 400 of FIG. 4A may be used with other systems and/or components. Additionally, the method 400 of FIG. 4A will be described with reference to the illustrative example of FIG. 2 .
  • the method 400 may begin at block 402 , wherein the method 400 may include determining if the vehicle 102 enters the arrival status zone 202 b.
  • the location determinant module 148 may communicate the location of the vehicle 102 and the traveling direction of the vehicle 102 to the zone determinant module 150 .
  • the zone determinant module 150 may determine the plurality of zones associated with the barrier 104 that specifically pertain to the arrival of the vehicle 102 towards the barrier 104 .
  • the zone determinant module 150 may populate the barrier profile associated with the barrier 104 with the plurality of GPS coordinates associated with portions the boundary 202 a of the arrival status zone 202 b.
  • the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a.
  • the location determinant module 148 may also access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is entering any of the portions of the boundary 202 a of the arrival status zone 202 b. More specifically, the location determinant module 148 may continually compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 202 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 202 a, the location determinant module 148 may determine that the vehicle 102 enters the arrival status zone 202 b.
  • the vehicle 102 may enter the arrival status zone 202 b .
  • the location determinant module 148 may determine when the vehicle 102 enters the arrival status zone 202 b once the vehicle 102 crosses one of the portions of the boundary 202 a.
  • the method 400 may proceed to block 404 , wherein the method 400 may include sending at least one status request signal to the barrier controller 108 .
  • the location determinant module 148 may communicate respective data to the barrier status determinant module 152 .
  • the barrier status determinant module 152 may responsively utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals to the transceiver 140 to be evaluated by the barrier controller 108 to determine the current state of the barrier 104 .
  • the barrier status determinant module 152 may send the status request data signal(s) to determine if the barrier 104 is currently in the opened state, the closed state, or the partially opened state.
  • the method 400 may proceed to block 406 , wherein the method 400 may include receiving at least one current state data signal from the barrier controller 108 .
  • the barrier controller 108 may evaluate the one or more status request signals received by the transceiver 140 and may determine the current state of the barrier 104 .
  • the barrier controller 108 may determine the current state as the opened state when the barrier 104 is in a fully opened positon. Additionally, the barrier controller 108 may determine the current state as the closed state when the barrier 104 is in a fully closed positon.
  • the barrier controller 108 may determine the current state of the barrier 104 as the partially opened state when the barrier 104 is partially opened.
  • the barrier controller 108 may further determine the barrier traversing level of the barrier 104 (e.g., 65% open) when the current state of the barrier 104 is the partially opened state.
  • the barrier controller 108 may utilize the transceiver 140 to communicate the one or more current state data signals that include the current state of the barrier 104 as the opened state, the closed state, or the partially opened state to the vehicle communication system 128 .
  • the current data state data signal(s) may additionally include the barrier traversing level of the barrier 104 .
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to evaluate the current state of the barrier 104 .
  • the method 400 may proceed to block 408 , wherein the method 400 may include determining if the barrier 104 is in the closed state or the partially opened state.
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to evaluate the current state of the barrier 104 .
  • the barrier control module 154 may evaluate the current state and determine if the barrier 104 is in the closed state or the partially opened state as communicated by the barrier controller 108 (at block 406 ).
  • the method 400 may proceed to block 410 , wherein the method 400 may include determining if the vehicle 102 reaches one or more sensing locations. As discussed above, during daily operation of the vehicle 102 , when the vehicle 102 is determined to be arriving towards the barrier 104 , the image sensors 134 , and/or the RADAR/LADAR sensors 136 may be able to make one or more sensor based determinations that may include specific geo-locations within the vicinity of the barrier 104 at which the sensing locations 204 are determined and applied.
  • the sensing locations 204 applied by the location determinant module 148 may be determined based on the foremost locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may initially sense the full expanse of the movement path of the barrier 104 .
  • the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the movement path of the barrier 104 may be utilized separately or may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 are initially capable of sensing obstacles within the full expanse of the movement path of the barrier 104 .
  • the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 204 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the full expanse of the movement path of the barrier 104 . As the vehicle 102 continues to travel and arrive towards the barrier 104 , the location determinant module 148 may utilize information related to the sensing locations 204 retrieved from the barrier profile to determine that the vehicle 102 reaches one of the sensing locations 204 .
  • the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signals sent by the image sensors 134 that indicate that the sensors 134 are able to and/or are capturing images of the full expanse of the movement path of the barrier 104 as the vehicle 102 is arriving towards the barrier 104 . Additionally, or alternatively, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signals sent by the RADAR/LADAR sensors 136 that the sensors 136 are capable of and/or are sensing obstacles that may be located within the full expanse of movement path of the barrier 104 .
  • the method 400 may proceed to block 412 , wherein the method 400 may include communicating with the image sensors 134 and/or the RADAR/LADAR sensors 136 of the vehicle 102 to receive sensor data.
  • the location determinant module 148 may communicate respective data to the barrier status determinant module 152 .
  • the method 400 may proceed to block 414 , wherein the method 400 may include receiving sensor data from the image sensors 134 and/or the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may responsively communicate with the image sensors 134 to receive image data and/or the RADAR/LADAR sensors 136 to receive sensor wave data pertaining to the movement path of the barrier 104 .
  • the method 400 may proceed to block 416 , wherein the method 400 may include determining if the sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may determine that sensor data is received from both of the image sensors 134 and the RADAR/LADAR sensors 136 based on the receipt of image data and sensor wave data respectively from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may determine that the sensor data is not received from both sensors 134 , 136 .
  • the method 400 may proceed to block 418 , wherein the method 400 may include aggregating sensor data received from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may utilize a sensor data fusion logic to aggregate the image data and the sensor wave data.
  • data pertaining to one or more images of the movement path of the barrier 104 captured by the image sensors 134 and/or the sensing of one or more possible obstacles located within the movement path of the barrier 104 may be combined in order to be analyzed as an aggregated sensor data package.
  • the method 400 may proceed to block 420 , wherein the method 400 may include analyzing the sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may utilize logic to process the image data, sensor wave data, and/or the aggregated data package.
  • the logic may include processing techniques such as feature extraction, RADAR/LADAR wave data evaluation, pattern recognition, density analysis, refraction analysis, reflection analysis, target analysis, and/or additional sensing analysis techniques that may be utilized or executed as part of one or more algorithms to analyze the sensor data to determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • processing techniques such as feature extraction, RADAR/LADAR wave data evaluation, pattern recognition, density analysis, refraction analysis, reflection analysis, target analysis, and/or additional sensing analysis techniques that may be utilized or executed as part of one or more algorithms to analyze the sensor data to determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the logic may take into account the barrier attributes that are retrieved from the barrier profile that may include, but are not limited to, the moving direction of the barrier 104 and data pertaining to driveways/roads leading up to the barrier 104 to more accurately determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the direction of the barrier 104 as it's opened and the slope of a surface leading up to the barrier 104 may be accounted for when determining if the individual(s) and/or object(s) are located within the movement path.
  • the barrier status determinant module 152 may utilize the TCU 120 to communicate with the external server infrastructure 144 through the internet cloud 126 to access and analyze barrier image data provided by the barrier controller 108 in addition to the aforementioned sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 .
  • the plurality of cameras of the barrier image sensors 146 may be disposed above/adjacent to the barrier 104 or within the area enclosed by the barrier 104 to capture images/video of the moving path of the barrier 104 and respective barrier image data may be stored on the external server infrastructure 144 to be accessed and evaluated by the barrier movement control application 106 .
  • the method 400 may proceed to block 422 , wherein the method 400 may include determining at least one individual and/or at least one object located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may determine if one or more individuals and/or one or more objects is located within the movement path of the barrier 104 that may obstruct the automatic opening of the barrier 104 as the vehicle 102 arrives towards the barrier 104 .
  • the method 400 may proceed to block 424 , wherein the method 400 may include inhibiting sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state.
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 .
  • the barrier control module 154 may ensure that data is sent to the vehicle communication system 128 to thereby inhibit the sending of the barrier control signal(s) to the barrier controller 108 associated with the barrier 104 . Consequently, the barrier status determinant module 152 inhibits the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 enters the barrier opening zone 206 b based on the determination of the at least one individual and/or at least one object within the movement path of the barrier 104 .
  • the method 400 may proceed to block 426 , wherein the method 400 may include presenting the barrier status user interface with the barrier movement inhibition alert.
  • the barrier control module 154 may communicate respective data to the barrier status presentation module 156 .
  • the barrier status presentation module 156 may responsively communicate with the infotainment system 118 of the vehicle 102 to present the barrier movement inhibition alert on the display unit 114 .
  • the barrier movement inhibition alert may include a manual barrier movement user input that may be inputted by the user to allow the sending of the barrier control signal to move the barrier 104 .
  • FIG. 4B is an illustrative example of a scenario in which the barrier control application 106 may inhibit sending of at least one barrier control signal during the arrival of the vehicle 102 towards the barrier 104 according to an exemplary embodiment.
  • the barrier 104 which is included as an entry gate 432 may be automatically opened to allow the vehicle 102 to enter a premises upon the arrival of the vehicle 102 .
  • the barrier status determinant module 152 may determine that an object 434 may be located within the movement path of the entry gate 432 . Therefore, the barrier control module 154 may inhibit sending of the at least one barrier control signal to the barrier controller 108 to thereby inhibit the automatic opening of the entry gate 432 .
  • the method 400 may proceed to block 428 , wherein the method 400 may include determining if the vehicle 102 enters the barrier opening zone 206 b. Upon the vehicle 102 entering the arrival status zone 202 b, the vehicle 102 may continue to travel through the arrival status zone 202 b towards the barrier 104 .
  • the location determinant module 148 may access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is entering any of the portions of the boundary 206 a of the barrier opening zone 206 b. More specifically, the location determinant module 148 may continue to compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 206 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 206 a, the barrier control module 154 determines that the vehicle 102 enters the barrier opening zone 206 b.
  • the method 400 may proceed to block 430 , wherein the method 400 may include sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state.
  • the barrier control module 154 may utilize the current state of the barrier 104 as the closed state or the partially opened state to accordingly send the one or more barrier control signals to remotely control the movement of the barrier 104 to traverse the barrier 104 to the opened state. More specifically, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the closed state to the opened state.
  • the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the partially opened state to the (fully) opened state.
  • the barrier controller 108 may evaluate the received barrier control signals and may responsively traverse the barrier 104 from the closed state or partially opened state to the opened state.
  • the barrier control module 154 may communicate with the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved from the movement path of the barrier 104 before the vehicle 102 enters the barrier opening zone 206 b.
  • the barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object continues to be located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 and may consequently allow the sending of the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the opened state (at block 430 ).
  • the barrier control module 154 may communicate respective data to the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved within the movement path of the barrier 104 after the vehicle 102 has entered the barrier opening zone 206 b and the barrier control signal(s) has been sent to the barrier controller 108 .
  • the barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object is (subsequently) located within the movement path of the barrier 104 after the barrier control signal(s) is sent.
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to cease movement of the barrier 104 .
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to traverse the barrier 104 to the closed state.
  • FIG. 5A is a process flow diagram of a method 500 for inhibiting or providing automatic movement of the barrier 104 when the vehicle 102 is determined to be departing away from the barrier 104 according to an exemplary embodiment.
  • FIG. 5 A will be described with reference to the components of FIG. 1 though it is to be appreciated that the method 500 of FIG. 5A may be used with other systems and/or components. Additionally, the method 500 of FIG. 5A will be described with reference to the illustrative example of FIG. 3 .
  • the method 500 may begin at block 502 , wherein the method 500 may include determining if the vehicle 102 exits the departure status zone 302 b.
  • the location determinant module 148 may determine that the vehicle 102 is departing away from the barrier 104 and may communicate the location of the vehicle 102 and the traveling direction of the vehicle 102 to the zone determinant module 150 .
  • the zone determinant module 150 may determine the plurality of zones associated with the barrier 104 that specifically pertain to the departure of the vehicle 102 away from the barrier 104 .
  • the zone determinant module 150 may populate the barrier profile associated with the barrier 104 with the plurality of GPS coordinates associated with portions the boundary 302 a of the departure status zone 302 b.
  • the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a.
  • the location determinant module 148 may also access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is exiting any of the portions of the boundary 302 a of the departure status zone 302 b. More specifically, the location determinant module 148 may continually compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 302 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 302 a, the location determinant module 148 may determine that the vehicle 102 exits the departure status zone 302 b.
  • the vehicle 102 may exit the departure status zone 302 b.
  • the location determinant module 148 may determine when the vehicle 102 exits the departure status zone 302 b once the vehicle 102 crosses one of the portions of the boundary 302 a.
  • the method 500 may procced to block 504 , wherein the method 500 may include sending at least one status request signal to the barrier controller 108 .
  • the location determinant module 148 may communicate respective data to the barrier status determinant module 152 .
  • the barrier status determinant module 152 may responsively utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals to the transceiver 140 to be evaluated by the barrier controller 108 to determine the current state of the barrier 104 .
  • the barrier status determinant module 152 may send the status request data signal(s) to determine if the barrier 104 is currently in the opened state, the closed state, or the partially opened state.
  • the method 500 may proceed to block 506 , wherein the method 500 may include receiving at least one current state data signal from the barrier controller 108 .
  • the barrier controller 108 may utilize the transceiver 140 to communicate the one or more current state data signals that include the current state of the barrier 104 as the opened state, the closed state, or the partially opened state to vehicle communication system 128 .
  • the method 500 may proceed to block 508 , wherein the method 500 may include determining if the barrier 104 is in the opened state or the partially opened state.
  • the vehicle communication system 128 may communicate the current state of the barrier 104 to the barrier status determinant module 152 .
  • the barrier status determinant module 152 may responsively determine if the current state of the barrier 104 is in the opened state or the partially opened state. This determination may be made by the barrier status determinant module 152 to determine if the user manually actuated movement of the barrier 104 to close the barrier 104 as the vehicle 102 is departing away from the barrier 104 .
  • the method 500 may proceed to block 510 , wherein the method 500 may include determining if the vehicle 102 reaches one or more sensing locations. As discussed above, during daily operation of the vehicle 102 , when the vehicle 102 is determined to be departing away from the barrier 104 , the image sensors 134 , and/or the RADAR/LADAR sensors 136 may be able to make one or more sensor based determinations that may include specific areas within the vicinity of the barrier 104 at which the sensing locations 304 are determined.
  • the sensing locations 304 are applied by the location determinant module 148 may be determined based on the locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may sense the full expanse of the movement path of the barrier 104 .
  • the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the movement path of the barrier 104 may be utilized separately or may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 are initially capable of sensing obstacles within the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104 .
  • the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 304 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the full expanse of the movement path of the barrier 104 . As the vehicle 102 continues to travel and depart away from the barrier 104 , the location determinant module 148 may utilize information related to the sensing locations 304 retrieved from the barrier profile to determine that the vehicle 102 reaches one of the sensing locations 204 .
  • the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 304 based on the receipt of one or more sensing signals sent by the image sensors 134 that indicate that the sensors 134 are able to and/or are capturing images of the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104 . Additionally, or alternatively, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signal sent by the RADAR/LADAR sensors 136 that the sensors 136 are capable of and/or are sensing obstacles that may be located within the full expanse of movement path of the barrier 104 .
  • the method 500 may proceed to block 512 , wherein the method 500 may include communicating with the image sensors 134 and/or the RADAR/LADAR sensors 136 of the vehicle 102 to receive sensor data.
  • the location determinant module 148 may communicate respective data to the barrier status determinant module 152 .
  • the method 500 may proceed to block 514 , wherein the method 400 may include receiving sensor data from the image sensors 134 and/or the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may responsively communicate with the image sensors 134 to receive image data and/or the RADAR/LADAR sensors 136 to receive sensor wave data pertaining to the movement path of the barrier 104 .
  • the method 500 may proceed to block 516 , wherein the method 500 may include determining if the sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may determine that sensor data is received from both of the image sensors 134 and the RADAR/LADAR sensors 136 based on the receipt of image data and sensor wave data respectively from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may determine that the sensor data is not received from both sensors 134 , 136 .
  • the method 500 may proceed to block 518 , wherein the method 500 may include aggregating sensor data received from the image sensors 134 and the RADAR/LADAR sensors 136 .
  • the barrier status determinant module 152 may utilize sensor data fusion logic to aggregate the image data and the sensor wave data. In other words, data pertaining to one or more images of the movement path of the barrier 104 captured by the image sensors 134 and/or the sensing of one or more possible obstacles located within the movement path of the barrier 104 may be combined in order to be analyzed as an aggregated sensor data package.
  • the method 500 may proceed to block 520 , wherein the method 500 may include analyzing the sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may utilize logic (discussed above with respect to block 518 of FIG. 5 ) to process the image data, sensor wave data, and/or the aggregated data package.
  • the logic may take into account the barrier attributes retrieved from the barrier profile, discussed above, that may include, but are not limited to the moving direction of the barrier 104 and data pertaining to driveways/roads leading up to the barrier 104 to more accurately determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the direction of the barrier 104 as it's opened and the slope of a surface leading up to the barrier 104 may be accounted for when determining if the individual(s) and/or object(s) are located within the movement path.
  • the barrier status determinant module 152 may utilize the TCU 120 to communicate with the external server infrastructure 144 through the internet cloud 126 to access and analyze barrier image data provided by the barrier controller 108 in addition to the aforementioned sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 .
  • the method 500 may proceed to block 522 , wherein the method 500 may include determining at least one individual and/or at least one object located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may determine if at least one individual and/or at least one object is located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may determine if one or more individuals and/or one or more objects is located within the movement path of the barrier 104 that may obstruct the automatic closing of the barrier 104 as the vehicle 102 departs away from the barrier 104 .
  • the method 500 may proceed to block 524 , wherein the method 500 may include inhibiting sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state.
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 .
  • the barrier control module 154 may ensure that data is sent to the vehicle communication system 128 to thereby inhibit the sending of the barrier control signal(s) to the barrier controller 108 associated with the barrier 104 . Consequently, the barrier status determinant module 152 inhibits the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 exits the barrier closing zone 306 b based on the determination of the at least one individual and/or at least one object within the movement path of the barrier 104 .
  • the method 500 may proceed to block 526 , wherein the method 500 may include presenting the barrier status user interface with the barrier movement inhibition alert.
  • the barrier control module 154 may communicate respective data to the barrier status presentation module 156 .
  • the barrier status presentation module 156 may responsively communicate with the infotainment system 118 of the vehicle 102 to present the barrier movement inhibition alert on the display unit 114 .
  • the barrier movement inhibition alert may include a manual barrier movement user input that may be inputted by the user to allow the sending of the barrier control signal to move the barrier 104 .
  • FIG. 5B is an illustrative example of a scenario in which the barrier control application 106 may inhibit sending of at least one barrier control signal during the departure of the vehicle 102 away from the barrier 104 according to an exemplary embodiment.
  • the barrier 104 which is included as a garage door 532 may be automatically closed from the fully opened state when the vehicle 102 departs away from the barrier 104 .
  • the barrier status determinant module 152 may determine that an object 534 may be located within the movement path of the barrier 104 . Therefore, the barrier control module 154 may inhibit sending the at least one barrier control signal to the barrier controller 108 to thereby inhibit the automatic closing of the garage door 532 .
  • the method 500 may proceed to block 528 , wherein the method 500 includes determining if the vehicle 102 exits the barrier closing zone 306 b. In one embodiment, upon the vehicle 102 exiting the departure status zone 302 b, the vehicle 102 may continue to travel through the barrier closing zone 306 b as the vehicle 102 continues to depart away from the barrier 104 .
  • the location determinant module 148 may access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is exiting (e.g., crossing) any of the portions of the boundary 306 a of the barrier closing zone 306 b . More specifically, the location determinant module 148 may continue to compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 306 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 306 a, the barrier control module 154 determines that the vehicle 102 exits the barrier closing zone 306 b.
  • the method 500 may proceed to block 530 , wherein the method 500 may include sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the closed state.
  • the barrier control module 154 may utilize the current state of the barrier 104 as the opened state or the partially opened state to accordingly send the one or more barrier control signals to remotely control the movement of the barrier 104 to traverse the barrier 104 to the closed state. More specifically, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the opened state to the closed state.
  • the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the partially opened state to the (fully) closed state.
  • the barrier controller 108 may evaluate the received barrier control signals and may responsively traverse the barrier 104 from the opened state or partially opened state to the closed state.
  • the barrier control module 154 may communicate with the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved from the movement path of the barrier 104 before the vehicle 102 exits the barrier closing zone 306 b.
  • the barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object continues to be located within the movement path of the barrier 104 .
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 and may consequently allow the sending of the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the closed state (at block 530 ).
  • the barrier control module 154 may communicate respective data to the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved within the movement path of the barrier 104 after the vehicle 102 has exited the barrier closing zone 306 b and the barrier control signal(s) has been sent to the barrier controller 108 .
  • the barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object is (subsequently) located within the movement path of the barrier 104 after the barrier control signal(s) is sent.
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to cease movement of the barrier 104 .
  • the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to traverse the barrier 104 to the opened state.
  • FIG. 6 is an illustrative example of the barrier movement inhibition alert 602 presented on the display unit 114 of the vehicle 102 according to an exemplary embodiment.
  • the barrier movement inhibition alert 602 may be presented when the barrier control application 106 inhibits the sending of at least one barrier control signal to the barrier control to traverse the barrier 104 to the opened state or the closed state.
  • the barrier movement inhibition alert 602 may include a manual barrier movement user input 604 that may be inputted by the user to manually override inhibiting of the sending of the at least one barrier control signal.
  • the user may input the manual barrier movement user input 604 to manually actuate the opening and/or closing of the barrier 104 .
  • the barrier movement inhibition alert 602 may additionally include the current status of the barrier 606 as determined based on the vehicle 102 entering the arrival status zone 202 b or the vehicle 102 exiting the departure status zone 302 b. Additionally, the barrier movement inhibition alert 602 may include the barrier traversing level 608 that indicates the opening/closing level of the barrier 104 .
  • FIG. 7 is a process flow diagram of a method 700 for inhibiting automatic movement of the barrier 104 according to an exemplary embodiment.
  • the method 700 may begin at block 702 , wherein the method 700 may include determining a current state of the barrier 104 when a vehicle 102 travels through at least one first zone associated with a barrier 104 .
  • the method 700 may proceed to block 704 , wherein the method 700 may include analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier 104 .
  • at least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier.
  • the method 700 may proceed to block 706 , wherein the method 700 may include inhibiting a sending of a barrier control signal that is automatically sent to move the barrier 104 once the vehicle 102 travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier 104 .
  • the method 700 may proceed to block 708 , wherein the method 700 may include presenting a user interface alert relating to inhibiting the automatic movement of the barrier 104 .
  • the user interface alert includes a manual barrier movement user input that may be inputted to send the at least one barrier control signal to move the barrier.
  • various exemplary embodiments of the invention may be implemented in hardware.
  • various exemplary embodiments may be implemented as instructions stored on a non-transitory machine-readable storage medium, such as a volatile or non-volatile memory, which may be read and executed by at least one processor to perform the operations described in detail herein.
  • a machine-readable storage medium may include any mechanism for storing information in a form readable by a machine, such as a personal or laptop computer, a server, or other computing device.
  • a non-transitory machine-readable storage medium excludes transitory signals but may include both volatile and non-volatile memories, including but not limited to read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and similar storage media.
  • any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention.
  • any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in machine readable media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A system and method for inhibiting automatic movement of a barrier that includes determining a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier. The system and method also include analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier. The system and method further include inhibiting a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that the at least one: individual or object is located within the movement path of the barrier. Additionally, the system and method include presenting a user interface alert relating to inhibiting the automatic movement of the barrier.

Description

This application claims priority to U.S. Provisional Application Ser. No. 62/542,755 filed on Aug. 8, 2017, which is expressly incorporated herein by reference.
BACKGROUND
In many cases, movable barriers such as entrance gates and garage doors may be mechanically operated to open or close as a vehicle is arriving towards a barrier or departing away from the barrier. In many cases, the vehicle may be located in an area capable of communicating via radio frequency communication with a controller of the barrier in order to actuate the opening or closing of the barrier without the driver of the vehicle being able to view a movement path (e.g., opening path or closing path) of the barrier to determine if an individual or object is located within the movement path.
In some cases, when the vehicle is arriving towards the barrier, the opening of the barrier such an entrance gate may be actuated before a driver has an opportunity to observe if an individual or object is obstructing the opening path of the gate. Similarly, when the vehicle is departing away from the barrier, the closing of the barrier such as garage door may be actuated even if an individual or object may obstruct the closing path of the garage door.
BRIEF DESCRIPTION
According to one aspect, a computer-implemented method for inhibiting automatic movement of a barrier that includes determining a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier. The method also includes analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier. At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier. The method additionally includes inhibiting a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier. The method further includes presenting a user interface alert relating to inhibiting the automatic movement of the barrier.
According to another aspect, a system for inhibiting automatic movement of a barrier that includes a memory storing instructions when executed by a processor cause the processor to determine a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier. The instructions also cause the processor to analyze sensor data to determine if at least one: individual or object is located within a movement path of the barrier. At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier. The instructions additionally cause the processor to inhibit a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier. The instructions further cause the processor to present a user interface alert relating to inhibiting the automatic movement of the barrier.
According to still another aspect, a computer readable storage medium storing instructions that when executed by a computer, which includes at least a processor, causes the computer to perform a method that includes determining a current state of a barrier when a vehicle travels through at least one first zone associated with the barrier. The instructions also include analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier. At least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier. The instructions additionally include inhibiting a sending of the at least one barrier control signal that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier. The instructions further include presenting a user interface alert relating to inhibiting the automatic movement of the barrier.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of an operating environment for implementing systems and methods within a vehicle for inhibiting automatic movement of a movable barrier according to an exemplary embodiment;
FIG. 2 is an illustrative example of a plurality of zones associated with the barrier that may be applied when the vehicle is determined to be arriving towards the barrier according to an exemplary embodiment;
FIG. 3 is an illustrative example of a plurality of zones associated with the barrier that may be applied when the vehicle is determined to be departing away from the barrier according to an exemplary embodiment;
FIG. 4A is a process flow diagram of a method for inhibiting or providing automatic movement of the barrier when the vehicle is determined to be arriving towards the barrier according to an exemplary embodiment;
FIG. 4B is an illustrative example of a scenario in which the barrier control application may inhibit sending of at least one barrier control signal during the arrival of the vehicle towards the barrier according to an exemplary embodiment;
FIG. 5A is a process flow diagram of a method for inhibiting or providing automatic movement of the barrier when the vehicle is determined to be departing away from the barrier according to an exemplary embodiment;
FIG. 5B is an illustrative example of a scenario in which the barrier control application may inhibit sending of at least one barrier control signal during the departure of the vehicle away from the barrier according to an exemplary embodiment;
FIG. 6 is an illustrative example of the barrier movement inhibition alert presented on the display unit of the vehicle according to an exemplary embodiment; and
FIG. 7 is a process flow diagram of a method for inhibiting automatic movement of the barrier according to an exemplary embodiment.
DETAILED DESCRIPTION
The following includes definitions of selected terms employed herein. The definitions include various examples and/or forms of components that fall within the scope of a term and that can be used for implementation. The examples are not intended to be limiting.
A “bus”, as used herein, refers to an interconnected architecture that is operably connected to other computer components inside a computer or between computers. The bus can transfer data between the computer components. The bus can be a memory bus, a memory controller, a peripheral bus, an external bus, a crossbar switch, and/or a local bus, among others. The bus can also be a vehicle bus that interconnects components inside a vehicle using protocols such as Media Oriented Systems Transport (MOST), Controller Area network (CAN), Local Interconnect Network (LIN), among others.
“Computer communication”, as used herein, refers to a communication between two or more computing devices (e.g., computer, personal digital assistant, cellular telephone, network device) and can be, for example, a network transfer, a file transfer, an applet transfer, an email, a hypertext transfer protocol (HTTP) transfer, and so on. A computer communication can occur across, for example, a wireless system (e.g., IEEE 802.11), a Bluetooth® communication system, a radio frequency communication system (e.g., LF radio frequency), an Ethernet system (e.g., IEEE 802.3), a token ring system (e.g., IEEE 802.5), a local area network (LAN), a wide area network (WAN), a point-to-point system, a circuit switching system, a packet switching system, among others.
A “disk”, as used herein can be, for example, a magnetic disk drive, a solid state disk drive, a floppy disk drive, a tape drive, a Zip drive, a flash memory card, and/or a memory stick. Furthermore, the disk can be a CD-ROM (compact disk ROM), a CD recordable drive (CD-R drive), a CD rewritable drive (CD-RW drive), and/or a digital video ROM drive (DVD ROM). The disk can store an operating system that controls or allocates resources of a computing device.
A “database”, as used herein can refer to table, a set of tables, a set of data stores and/or methods for accessing and/or manipulating those data stores. Some databases can be incorporated with a disk as defined above.
A “memory”, as used herein can include volatile memory and/or non-volatile memory. Non-volatile memory can include, for example, ROM (read only memory), PROM (programmable read only memory), EPROM (erasable PROM), and EEPROM (electrically erasable PROM). Volatile memory can include, for example, RAM (random access memory), synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and direct RAM bus RAM (DRRAM). The memory can store an operating system that controls or allocates resources of a computing device.
A “module”, as used herein, includes, but is not limited to, non-transitory computer readable medium that stores instructions, instructions in execution on a machine, hardware, firmware, software in execution on a machine, and/or combinations of each to perform a function(s) or an action(s), and/or to cause a function or action from another module, method, and/or system. A module may also include logic, a software controlled microprocessor, a discrete logic circuit, an analog circuit, a digital circuit, a programmed logic device, a memory device containing executing instructions, logic gates, a combination of gates, and/or other circuit components. Multiple modules may be combined into one module and single modules may be distributed among multiple modules.
An “operable connection”, or a connection by which entities are “operably connected”, is one in which signals, physical communications, and/or logical communications can be sent and/or received. An operable connection can include a wireless interface, a physical interface, a data interface and/or an electrical interface.
A “processor”, as used herein, processes signals and performs general computing and arithmetic functions. Signals processed by the processor can include digital signals, data signals, computer instructions, processor instructions, messages, a bit, a bit stream, or other means that can be received, transmitted and/or detected. Generally, the processor can be a variety of various processors including multiple single and multicore processors and co-processors and other multiple single and multicore processor and co-processor architectures. The processor can include various modules to execute various functions.
A “portable device”, as used herein, is a computing device typically having a display screen with user input (e.g., touch, keyboard) and a processor for computing. Portable devices include, but are not limited to, handheld devices, mobile devices, smart phones, laptops, tablets and e-readers. In some embodiments, a “portable device” could refer to a remote device that includes a processor for computing and/or a communication interface for receiving and transmitting data remotely.
A “vehicle”, as used herein, refers to any moving vehicle that is capable of carrying one or more human occupants and is powered by any form of energy. The term “vehicle” includes, but is not limited to: cars, trucks, vans, minivans, SUVs, motorcycles, scooters, boats, go-karts, amusement ride cars, rail transport, personal watercraft, and aircraft. In some cases, a motor vehicle includes one or more engines. Further, the term “vehicle” can refer to an electric vehicle (EV) that is capable of carrying one or more human occupants and is powered entirely or partially by one or more electric motors powered by an electric battery. The EV can include battery electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV). The term “vehicle” can also refer to an autonomous vehicle and/or self-driving vehicle powered by any form of energy. The autonomous vehicle may or may not carry one or more human occupants. Further, the term “vehicle” can include vehicles that are automated or non-automated with pre-determined paths or free-moving vehicles.
A “value” and “level”, as used herein can include, but is not limited to, a numerical or other kind of value or level such as a percentage, a non-numerical value, a discrete state, a discrete value, a continuous value, among others. The term “value of X” or “level of X” as used throughout this detailed description and in the claims refers to any numerical or other kind of value for distinguishing between two or more states of X. For example, in some cases, the value or level of X may be given as a percentage between 0% and 100%. In other cases, the value or level of X could be a value in the range between 1 and 10. In still other cases, the value or level of X may not be a numerical value, but could be associated with a given discrete state, such as “not X”, “slightly x”, “x”, “very x” and “extremely x”.
I. System Overview
Referring now to the drawings, wherein the showings are for purposes of illustrating one or more exemplary embodiments and not for purposes of limiting same, FIG. 1 is a schematic view of an operating environment 100 for implementing systems and methods within a vehicle 102 for inhibiting automatic movement of a movable barrier (barrier) 104 according to an exemplary embodiment. The components of the environment 100, as well as the components of other systems, hardware architectures, and software architectures discussed herein, can be combined, omitted, or organized into different architectures for various embodiments.
Generally, the environment includes a barrier movement control application (barrier control application) 106 that is executed to automatically control the movement of the barrier 104 that may include, but may not be limited to a garage door, a gate (e.g., one or more entry or exit gate doorways), a door (e.g., a residential door), etc., based on a current state (e.g., opened state or closed state) of the barrier 104 from a vehicle 102 based on a current location of the vehicle 102, traveling direction of the vehicle 102 and/or current opened or closed state of the barrier 104. More specifically, the barrier control application 106 may determine the (traveling or parking) location of the vehicle 102, the vehicle 102 is either arriving towards a location at which the barrier 104 is located (arriving towards the barrier 104) or departing away from the location at which the barrier 104 is located (departing away from the barrier 104), and the like.
As discussed in much detail below, the barrier control application 106 may be used to determine one or more zones associated with the barrier 104 that may be applied by the application 106 to send one or more types of signals to a barrier controller 108 based on one or more factors. The one or more types of signals may be used to determine a current state of the barrier 104, to send a command to traverse the barrier 104 to the opened state (e.g., to fully open the barrier 104), traverse the barrier 104 to the closed state (e.g., to fully close the barrier 104). As discussed below, the barrier control application 106 may operate to inhibit the automatic sending of the one or more types of signals to traverse the barrier 104 to the opened or closed state based on the detection of one or more individuals or objects that are located within a movement path of the barrier 104 (e.g., opening path or closing path of the barrier 104).
More particularly, the barrier control application 106 may operate to ensure that the barrier 104 such as an entrance/exit gate or garage door is not automatically moved to open or close the barrier 104 to traverse the barrier 104 when the individual(s) or object(s) is detected within the space that is occupied by the barrier 104 as it is opened or closed otherwise described as movement path of the barrier 104. For example, (as illustrated in FIG. 4B), the application 106 may ensure that automatic opening of an entrance gate that may occur upon the arrival of the vehicle 102 towards the entrance gate is inhibited when an object (e.g., other vehicle) is detected to be located within the space that is occupied by the barrier 104 as it is opened. Additionally, the barrier control application 106 may operate to ensure that the barrier 104 such as a garage door is not automatically closed upon the departure of the vehicle 102 from the barrier 104 when an individual or object is detected within the movement path of the barrier 104. For example, (as illustrated in FIG. 5B) the application 106 may ensure that automatic closure of the garage door that may occur when the vehicle 102 departs from the barrier 104 is inhibited when an object is detected to be located within the space that is occupied by the barrier 104 as it's closed in a downward direction.
As discussed in more detail below, upon detecting an individual or object within the movement path and inhibiting the automatic movement of the barrier 104, the barrier control application 106 may present a barrier movement inhibition alert (illustrated in FIG. 6) that may provide a user (e.g., driver of the vehicle 102) with an alert regarding the inhibiting of the automatic movement of the barrier 104 as vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104. The barrier movement inhibition alert may also present the current status of the barrier 104 as an opened state, a partially opened state, or a closed state. More specifically, the barrier movement inhibition alert may present the current state of the barrier 104 as the opened state when the barrier 104 is stationary and within a fully opened state. Likewise, the barrier movement inhibition alert may present the current state of the barrier 104 as the closed state when the barrier 104 is stationary and within a fully closed state. Additionally, the barrier movement inhibition alert may present the real time status of the barrier 104 as the partially opened state that may indicate an opening level (e.g., percentage) of the barrier 104 as it is stationary or in movement to complete the process of being opened or closed. The barrier movement inhibition alert may also provide the user with a user input that may be utilized to manually send one or more signals to move the barrier 104 upon inhibiting the automatic sending of the signal(s).
In the illustrated embodiment of FIG. 1, the vehicle 102 may include a plurality of components that may be operably connected for computing communication via a bus (not shown) (e.g., a Controller Area Network (CAN) or a Local Interconnect Network (LIN) protocol bus), an input/output interface (I/O interface) and/or other wired and wireless technologies. The plurality of components of the vehicle 102 may generally include an electronic control unit (ECU) 110, a head unit 112, a display unit 114, a storage unit 116, and a telematics control unit (TCU) 120. Additionally, the plurality of components of the vehicle 102 may also include a plurality of vehicle systems 122 and a plurality of vehicle sensors 124 that are utilized to detect the presence of at least one individual or at least one object located within the movement path of the barrier 104.
In an exemplary embodiment, the ECU 110 of the vehicle 102 may include a processor (not shown), a memory (not shown), a disk (not shown), and an input/output (I/O) interface (not shown), which are each operably connected for computer communication via a bus (not shown). The I/O interface provides software and hardware to facilitate data input and output between the components of the ECU 110 and other components, networks, and data sources, of the environment 100. In one embodiment, the ECU 110 may execute one or more operating systems, applications, and/or interfaces that are associated with the vehicle 102 and/or the plurality of vehicle systems 122.
In one embodiment, the ECU 110 may execute the barrier control application 106 when a battery/accessory state of the vehicle 102 is enabled. Once executed, the barrier control application 106 may include components (discussed in more detail below) that may send commands to the components of the vehicle 102 and/or to components external to the vehicle 102 that include but are not limited to the barrier controller 108 operably connected to the barrier 104. In one or more embodiments, the ECU 110 may utilize sensor data provided by the plurality of vehicle sensors 124 to detect the at least one individual and/or the at least one object that is located within the movement path of the barrier 104. As discussed below, as the ECU 110 executes the barrier control application 106, one or more components of the application 106 may receive and analyze various types of sensor data provided by the plurality of vehicle sensors 124 to detect at least one individual or at least one object to further inhibit the sending of the one or more barrier control signals to move the barrier 104 to the opened state or the closed state.
In an exemplary embodiment, the plurality of vehicle sensors 124 of the vehicle 102 may include the image sensors 134, RADAR/LADAR sensors 136, and vehicle dynamics sensors 138. In one embodiment, the image sensors 134 may include a plurality of external and internal cameras that may include, but may not be limited to, an infrared camera, a digital camera, a stereo camera, a video camera (camera types not individually shown), and the like that may be mounted at one or more areas outside of and/or inside of the vehicle 102. In some embodiments, the image sensors 134 may include a plurality of cameras (not shown) that may be mounted at one or more external and interior locations of the vehicle 102 that may include, but may not be limited to, one or more bumpers (not shown), one or more external or internal light fixtures of the vehicle 102, a dashboard of the vehicle 102, a ceiling panel of the vehicle 102, side mirrors of the vehicle 102, a rear view mirror of the vehicle 102, side panels of the vehicle 102, one or more door/door handles of the vehicle 102, (all external and interior locations not individually shown) and the like.
In an exemplary embodiment, the image sensors 134 may be configured to provide a 360 degree stereoscopic view of the surrounding environment of the vehicle 102. The image sensors 134 may be configured to combine image pixels that correspond to the one or more points in a physical scene observed by the plurality of cameras. The image sensors 134 may provide image sensor data that includes a sequence of images/video that may pertain to an exterior environment of the vehicle 102. In one embodiment, the barrier control application 106 may communicate with the image sensors 134 to receive the image data as the vehicle 102 is within an image capturing distance of the barrier 104. As discussed below, the barrier control application 106 may utilize logic to analyze the one or more images of the barrier 104 to detect if the at least one individual and/or the at least one object is located within the movement path of the barrier 104.
The RADAR/LADAR sensors 136 of the plurality of vehicle sensors 124 may include, but may not be limited to, a millimeter wave radar, a laser detection and range sensor, an infrared sensor, a thermal sensor, and the like. Various alternate or additional hardware devices will be apparent for inclusion as the RADAR/LADAR sensors 136. The RADAR/LADAR sensors 136 may be disposed at one or more areas of the vehicle 102 that may include a front bumper, door panels, vehicle mirrors, a rear bumper, a roof, a floorboard, (areas of the vehicle 102 not individually shown) and the like. In one embodiment, the RADAR/LADAR sensors 136 may provide the barrier control application 106 with sensor wave data pertaining to sensing at least one obstacle that may exist within the movement path of the barrier 104. In one embodiment, the barrier control application 106 may communicate with the RADAR/LADAR sensors 136 to receive the sensor wave data that pertains to the movement path of the barrier 104 as it is moved to the opened state and/or the closed state. As discussed below, the barrier control application 106 may utilize logic to analyze the sensor wave data pertaining to the space to detect if the at least one individual and/or the at least one object is located within the movement path of the barrier 104.
In one or more embodiments, the vehicle dynamics sensors 138 may communicate with one or more components of the vehicle 102 that may include the ECU 110, an engine (not shown), a transmission (not shown), brakes (not shown), the plurality of vehicle systems 122, and the like to determine vehicle dynamics information. In some embodiments, the vehicle dynamics information may be evaluated by the barrier control application 106 to evaluate vehicle engine operation, vehicle speed, vehicle braking, vehicle steering, engine RPM, etc.
Referring to the head unit 112 of the vehicle 102, the head unit 112 may include internal processing memory, an interface circuit, and bus lines (components of the head unit not shown) for transferring data, sending commands, and communicating with the components of the vehicle 102 directly and/or through the ECU 110. In one or more embodiments, the ECU 110 may execute one or more operating systems, applications, and/or interfaces that are associated to the vehicle 102, the plurality of vehicle systems 122.
In one embodiment, the head unit 112 may be connected to an infotainment system 118. The infotainment system 118 may act as an information hub of the vehicle 102 that presents and delivers information to the user (e.g., audio, video, HVAC, barrier controls, etc.), In one embodiment, the infotainment system 118 may be operably connected to a barrier control system 130 of the vehicle 102 to send and receive data signals that may be utilized to remotely control the barrier 104. The infotainment system 118 may also be utilized to provide the barrier status user interface to the user through a display unit 114 operably connected to the infotainment system 118.
The display unit 114 may be disposed within a center stack area of the vehicle 102. Based on the operation of the infotainment system 118, the display unit 114 may display one or more vehicle human machine interfaces (vehicle HMI) to provide the driver of the vehicle 102 with various types of information and/or to receive one or more inputs from the driver of the vehicle 102. More specifically, the vehicle HMI may pertain to one or more operating systems, vehicle system interfaces, and application interfaces, including interfaces pertaining to the barrier control application 106. For example, the vehicle HMI may present one or more user interfaces of the barrier control application 106 including a barrier configuration user interface (not shown) and the barrier movement inhibition alert. In one or more embodiments, the infotainment system 118 may communicate with one or more additional display units (not shown) within the vehicle 102 that may include, but may not be limited to, a meter display and a head up display that may additionally or alternatively present the vehicle HMI.
In one embodiment, the head unit 112 may be operably connected to one or more notification devices (not shown) within the vehicle 102. More particularly, the head unit 112 may communicate with one or more haptic devices (not shown) (e.g., haptic steering wheel, haptic seats, haptic gear shifter) audio devices (not shown) (e.g., audio system, speakers), etc. that may also be used to provide the barrier movement inhibition alert relating to inhibiting the automatic movement of the barrier 104 based on the detection of the at least one individual or object. In other words, the head unit 112 may provide such notifications independent of the operation of the infotainment system 118.
In an exemplary embodiment, the vehicle 102 may additionally include a storage unit 116. The storage unit 116 may store one or more operating systems, applications, associated operating system data, application data, vehicle system and subsystem user interface data, and the like that are executed by the ECU 110, the head unit 112, and the plurality of vehicle systems 122. The storage unit 116 may include one or more barrier profiles that are respectively associated to one or more barriers based on user inputs. As discussed in more detail below, the barrier profile(s) may be created, populated and/or updated by the barrier control application 106.
In one embodiment, a respective barrier profile may include details that are associated with the barrier 104 as identified by the user and/or determined based on vehicle sensors 124. The details may include a barrier type assigned to the barrier 104 (e.g., entrance gate, exit gate, garage door), a name assigned to the barrier 104 by the user (e.g., primary garage door, main gate), a geo-location associated with the barrier 104 (e.g., GPS, DGPS coordinates of the location of the barrier 104), and a plurality of global positioning coordinates associated with respective boundaries of one or more zones associated with the barrier 104 that are utilized by the application 106. The barrier profiles may additionally include geo-locations associated with one or more sensing locations that are determined based on the capability of the image sensors 134 to capture images of a full expanse of the movement path of barrier 104 and/or the capability of the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier 104. In some embodiments, the one or more sensing locations may be evaluated and updated within the barrier profiles each time the vehicle 102 arrives towards the barrier 104 or departs away from the barrier 104. As discussed in more detail below, the barrier profile(s) may be created, populated, updated, and/or evaluated to retrieve data based on the execution of the barrier control application 106.
In one embodiment, the TCU 120 of the vehicle 102 may be utilized as an external interface for mobile communication between the vehicle 102 and an internet cloud communication network (internet cloud) 126 to send and retrieve data stored on one or more external devices. In one embodiment, the one or more external devices may include an external server infrastructure 144 that is accessible to provide data to the TCU 120.
In an exemplary embodiment, the TCU 120 may be configured to connect to a GSM, GPRS, Wi-Fi, WiMax, or LTE wireless connection to send and receive one or more data files through the internet cloud 126 to/from the external server infrastructure 144. The TCU 120 may also include a microcontroller (not shown) that controls the processes of the TCU 120 and a storage (not shown) that may include various types of memory to temporarily store data that are provided to/from the components of the vehicle 102.
In one embodiment, the external server infrastructure 144 may include a plurality of interconnected servers that support and maintain data that can be sent to the TCU 120 and may be further utilized by one or more components of the vehicle 102. The external server infrastructure 144 may include but is not limited to web servers, data servers, database servers, domain controllers, backup servers, and the like. In an exemplary embodiment, the external server infrastructure 144 may include a barrier controller data repository (not shown) that includes the current status of the barrier 104 that may be used by the application 106. In one embodiment, upon controlling the movement of the barrier 104 and changing the status of the barrier 104 (e.g., from the opened state to the closed state), the barrier controller 108 may access the internet cloud 126 (e.g., through a Wi-Fi connection) to update and store the (updated) current status of the barrier 104.
In one or more embodiments, the barrier control application 106 may utilize the TCU 120 to communicate with the internet cloud 126 to access the external server infrastructure 144 to communicate the barrier movement inhibition alert to the external server infrastructure 144. In one embodiment, one or more portable devices (not shown) may be utilized to present the barrier status user interface to present the user with the barrier movement inhibition alert to alert the user that the barrier 104 is inhibited from being automatically opened and/or closed based on the detection of the at least one individual and/or at least one object.
In some embodiments, the barrier 104 may include barrier image sensors 146 that may be disposed near the barrier 104 to capture images of the moving path of the barrier 104. The barrier image sensors may include one or more cameras, that may include, but are not limited to, infrared cameras, digital cameras, stereo cameras, video cameras that are directed towards the movement path of the barrier 104 to capture one or more images of the moving path of the barrier 104. In some configurations, the barrier image data provided by the barrier image sensors 146 may be uploaded directly to the external server infrastructure 144 to be accessed by the barrier control application 106 via the TCU 120 of the vehicle 102.
With continued reference to the vehicle 102, in addition to the infotainment system 118, the plurality of vehicle systems 122 may include, but may not be limited to, a vehicle communication system 128, the barrier control system 130, and a navigation system 132. In one embodiment, the vehicle communication system 128 may include one or more transceivers that are capable of providing wireless computer communications utilizing various protocols to be utilized to send/receive electronic signals internally to components and systems within the vehicle 102 and to external devices including a transceiver 140 operably connected to a barrier controller 108 associated with the barrier 104.
The vehicle communication system 128 may be capable of providing wired or wireless computer communications utilizing various protocols to send/receive non-transitory signals internally to the plurality of components of the vehicle 102 and/or externally to external devices. Generally, these protocols include a wireless system (e.g., IEEE 802.11 (WiFi), IEEE 802.15.1 (Bluetooth)), a near field communication system (NFC) (e.g., ISO 13157), a local area network (LAN), and/or a point-to-point system. More particularly, the vehicle communication system 128 may be utilized by the barrier control application 106 to send (i.e., transmit) one or more radio frequency (RF) signals in one or more frequencies and/or radio bands to communicate commands and data to the barrier controller 108 through the transceiver 140. In one embodiment, the vehicle communication system 128 may communicate the one or more command signals that include but are not limited to, at least one barrier status request signal and possibly at least one barrier control signal to the transceiver 140 when the movement path of the barrier 104 is determined to be clear (i.e., individual(s) and/or object(s) are not determined to be within the movement path) based on the execution of the application 106.
In particular, the barrier control application 106 may utilize the vehicle communication system 128 to send the one or more status request signals to be evaluated by the barrier controller 108. Upon evaluating the barrier status request signal(s), barrier controller 108 may determine the current state of the barrier 104 as the opened state, the partially opened state, or the closed state and may communicate the current state in the form of one or more barrier response signals. The vehicle communication system 128 may be utilized to receive the one or more barrier response data signals sent from the transceiver 140 including, but not limited to, at least one barrier status signal that are initiated by the barrier controller 108 to be interpreted by the barrier control application 106.
As discussed below, the barrier control application 106 may further utilize data provided by the image sensors 134 and/or the RADAR/LADAR sensors 136 to detect if at least one individual and/or the at least one object is located within the movement path of the barrier 104. If the application 106 determines that the movement path of the barrier 104 is clear, the vehicle communication system 128 may send the one or more barrier control signals to remotely control movement of the barrier 104 (e.g., actuate movement of the barrier 104 to open or close) based on the determination of the current state of the barrier 104 (as determined based on the evaluation of the one or more barrier response signals provided by the barrier controller 108).
In one embodiment, the barrier control system 130 of the vehicle 102 may be utilized to provide manual or automatic commands to the vehicle communication system 128 through the infotainment system 118. In particular, the barrier control system 130 may utilize the vehicle communication system 128 to send the one or more barrier control signals to actuate movement of the barrier 104 to open or close the barrier 104 based on one or more user inputs. In one configuration, the barrier control system 130 may be included as part of a HOMELINK® trainable garage door opening device (or other embedded, integrated accessory of the vehicle 102) that is integrated within a ceiling panel (not shown) or rearview mirror (not shown) of the vehicle 102. In some configurations, the barrier control system 130 may include one or more input buttons (not shown) that may be inputted by the user to actuate movement of the barrier 104.
In an exemplary embodiment, the navigation system 132 may be connected to the head unit 112, the infotainment system 118, and the display unit 114 to provide a map user interface (not shown) to the driver of the vehicle 102. The navigation system 132 may include a global position system 132 a (GPS) that may also be used to localize (i.e., determine the GPS or DGPS coordinates) the vehicle 102. The navigation system 132 may include its own processor and memory that communicate with the GPS 132 a to determine and provide route guidance to the driver of the vehicle 102.
In one or more embodiments, the navigation system 132 may include and/or may connect to and access a map database 132 b to present one or more details and graphics on the map user interface through the display unit 114. The map database 132 b may include geographical maps of one or more locations (e.g., countries, regions, cities) in which the vehicle 102 may be driven. The map database 132 b may also include locational data that pertains to the barrier 104. In one embodiment, the barrier control application 106 may utilize the navigation system 132 to localize the barrier 104 and to determine a plurality of global positioning coordinates associated with one or more areas that are located within the surrounding area of the barrier 104. The plurality of global positioning coordinates associated with the one or more areas may constitute boundaries of the one or more zones associated with the barrier 104.
With particular reference to the barrier 104, the barrier 104 may be connected to and controlled by the barrier controller 108. The barrier controller 108 may include internal processing memory, an interface circuit, and bus lines for transferring data, sending commands, and communicating with the components associated with and/or connected to the barrier 104. In one embodiment, the barrier controller 108 may be connected to a remote control (e.g., garage door remote) (not shown) and an interface device (e.g., wall inputs, numeric key pad) (not shown) that may be used by the user to provide one or more inputs to control movement of the barrier 104.
As discussed above, the barrier controller 108 may be operably connected to the transceiver 140. The barrier controller 108 may be configured to control operation of the transceiver 140 to receive the one or more command signals from the vehicle communication system 128. Additionally, the barrier controller 108 may be configured to control operation of the transceiver 140 to send (e.g., transmit) one or more response signals to the vehicle communication system 128. In particular, the barrier controller 108 may evaluate the one or more data signals received by the transceiver 140 and may instruct the transceiver 140 to send the one or more response data signals.
In an exemplary embodiment, the barrier controller 108 may also be operably connected to a Wi-Fi antenna 142. The Wi-Fi antenna 142 may be utilized as an external interface for mobile communication between the barrier controller 108 and the internet cloud 126 to send and retrieve data stored on the external server infrastructure 144 to store data within the barrier controller data repository. In an exemplary embodiment, the Wi-Fi antenna 142 may be configured to connect to Wi-Fi, WiMax, GSM, GPRS, or LTE wireless connection to send and receive one or more data files through the internet cloud 126 to/from the external server infrastructure 144. In one embodiment, the barrier controller 108 may send a command to the Wi-Fi antenna 142 to communicate with the internet cloud 126 to access the external server infrastructure 144 to store the current status of the barrier 104 as determined by the barrier controller 108.
In some embodiments, the barrier controller 108 may be operably connected to the barrier image sensors 146. As discussed above, the barrier image sensors 146 may be disposed near to the barrier 104 to capture one or more images of the moving path of the barrier 104. In one or more embodiments, the barrier image sensors 146 may provide barrier image data to the barrier controller 108. The barrier controller 108 may utilize the WI-FI antenna to communicate the barrier image data to be stored on the external server infrastructure 144. As discussed below, in some embodiments, the barrier control application 106 may utilize the TCU 120 to communicate with the external server infrastructure 144 over the internet cloud 126 to access the barrier image data by the application 106. The barrier image data may analyzed along with the sensor data provided by the vehicle sensors 124 to detect if at least one individual and/or at least one object located within the moving path of the barrier 104.
The Barrier Movement Control Application and Related Methods
The components of the barrier control application 106 will now be described according to an exemplary embodiment and with reference to FIG. 1. In an exemplary embodiment, the barrier control application 106 may be stored on the storage unit 116 of the vehicle 102. In alternate embodiments, the barrier control application 106 may be stored on the external server infrastructure 144 and may be accessed by the TCU 120 to be executed by the ECU 110 and/or the head unit 112 of the vehicle 102. As stated above, the barrier control application 106 may be executed when a battery/accessory state of the vehicle 102 is enabled. Therefore, the vehicle 102 (e.g., engine) does not have to be fully enabled for the ECU 110 or the head unit 112 to execute the barrier control application 106.
In an exemplary embodiment, the barrier control application 106 may include a location determinant module 148, a zone determinant module 150, a barrier status determinant module 152, a barrier control module 154, and a barrier status presentation module 156. It is to be appreciated that the barrier control application 106 may include additional modules and/or sub-modules that are configured to execute one or more functions of the application 106. As will be described in more detail below, the location determinant module 148 may be utilized to determine the location of the vehicle 102 with respect to the (location of) the barrier 104. The zone determinant module 150 may determine a plurality of zones that are utilized to send one or more signals between the vehicle communication system 128 and the transceiver 140.
The barrier status determinant module 152 may be utilized to access sensor data from the vehicle sensors 124 and barrier image data from the external server infrastructure 144 and analyze the data to detect if at least one individual or at least one object is located within the movement path of the barrier 104 to inhibit automatic movement of the barrier 104. The barrier status determinant module 152 may additionally determine the status of the barrier 104 as the opened state, the partially opened state, or the closed state and may communicate the current status of the barrier 104 to the barrier status presentation module 156.
The barrier control module 154 may be utilized to remotely control the movement of the barrier 104 to traverse the barrier 104 to the opened state, the closed state, or the partially opened state based on the current status of the barrier 104 when the movement path of the barrier 104 is detected to be clear (i.e., no individuals or objects are detected within the movement path of the barrier 104). Further, the barrier status presentation module 156 may receive data from the barrier status determinant module 152 and/or the barrier control module 154 and may communicate with the infotainment system 118 and may present the barrier movement inhibition alert when the at least one individual and/or the at least one object is detected within the movement path of the barrier 104.
As discussed, the user may create the barrier profile associated with the barrier 104. In one embodiment, upon creation of the barrier profile, the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the geo-location associated with the barrier 104. As discussed below, the geo-location associated with the barrier 104 may be used to determine if the vehicle 102 is being driven and is arriving towards the barrier 104 (i.e., the geo-location associated with the barrier 104). The geo-location associated with the barrier 104 may also be used to determine if the vehicle 102 is being driven and is departing away from the barrier 104 (i.e., the geo-location associated with the barrier 104). In some embodiments, the geo-location associated with the barrier 104 may additionally be used to determine if the vehicle 102 is located (e.g., parked) within a predetermined distance of the barrier 104 that may include the area enclosed by the barrier 104.
In one embodiment, the user may input a user interface icon (not shown) via the vehicle HMI presented on the display unit 114 to create the barrier profile associated with the barrier 104. For example, the driver of the vehicle 102 may wish to create the barrier profile that is associated to the barrier 104 (e.g., garage door) located at the driver's home to enable the application 106 to communicate with the barrier controller 108 (e.g., garage door opener) associated with the barrier 104. Once the user selects the respective user interface icon and inputs the name assigned to the barrier 104 per the user's choosing, the barrier control application 106 may store the barrier profile on the storage unit 116 of the vehicle 102. Upon storing the barrier profile on the storage unit 116, a respective indication may be communicated to the location determinant module 148 indicating that the user has setup the barrier profile associated with the barrier 104.
In an exemplary embodiment, upon receiving the indication that the user has setup the barrier profile associated with the barrier 104, the location determinant module 148 may present a barrier location determination user interface (not shown) to the user. The barrier location determination user interface may be utilized by the user to actuate the determination of the geo-location of the barrier 104 when the vehicle 102 is located within the area enclosed by the barrier 104. More specifically, the barrier location determination user interface may include a user interface object(s) that may be inputted by the user to indicate that the vehicle 102 is within the area enclosed by the barrier 104 to enable the zone determinant module 150 to determine the geo-location of the barrier 104.
In one embodiment, the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the geo-location of the barrier 104. The navigation system 132 may access the GPS 132 a to determine locational coordinates associated with the location of the vehicle 102. In one embodiment, the navigation system 132 may further access the map database 130 a to determine if a highlighted location that may include a dwelling/building that includes the barrier 104 is located within a predetermined proximity of the vehicle 102 (i.e., of the locational coordinates associated with the location of the vehicle 102 as determined by the GPS 132 a).
The highlighted location may be indicative of a home location saved by the user via the map user interface, a point of interest presented on the map interface, and/or a physical address that is included within the map database 130 a. In one embodiment, when the map database 130 a communicates that the highlighted location is located within the predetermined proximity of the vehicle 102, the location determinant module 148 may ask the user (via the barrier location determination user interface) if the user wishes to interpret the highlighted location as the geo-location associated with the barrier 104. If the user does wish to interpret the highlighted location as the geo-location associated with the barrier 104, the location determinant module 148 may access the barrier profile and populate the locational coordinates associated with the highlighted location as the geo-location associated with the barrier 104.
In an additional embodiment, the user may utilize the map user interface of the navigation system 132 to input a saved location that may be utilized by the application 106 as the location of the barrier 104. For example, the user may input a home location as a saved location on the map user interface. The user may additionally utilize the barrier configuration user interface to input the saved location as the location of the barrier 104. The location determinant module 148 may communicate with the navigation system 132 to determine the geo-location of the barrier 104 based on the saved location. The location determinant module 148 may further access the barrier profile stored on the storage unit 116 and may populate the locational coordinates associated with the saved location as the geo-location associated with the barrier 104.
As discussed below, the stored geo-location may be used by the application 106 to determine if the vehicle 102 is located within a predetermined vicinity of the barrier 104, if the vehicle 102 is located within the area enclosed by the barrier 104, if the vehicle 102 is arriving towards the barrier 104, or if the vehicle 102 is departing away from the barrier 104. Additionally, the stored geo-location may be used by the application 106 to determine the one or more zones associated with the barrier 104 utilized by the application 106 to send one or more signals to the barrier controller 108 based on the location and/or a traveling direction of the vehicle 102 with respect to the barrier 104.
In an exemplary embodiment, the location determinant module 148 may also be utilized to determine the location and/or the traveling direction of the vehicle 102 with respect to the barrier 104. In particular, the location determinant module 148 may determine if the vehicle 102 is located within the area enclosed by the barrier 104 (e.g., a garage), the vehicle 102 is located within the predetermined vicinity of the barrier 104 (e.g., 10 m from the barrier), the vehicle 102 is arriving toward the barrier 104 (e.g., vehicle 102 is being driven to the home where the barrier 104 is located), or the vehicle 102 is departing from the barrier 104 (e.g., vehicle 102 is being driven away from the home where the barrier 104 is located).
In one embodiment, the location determinant module 148 may communicate with the navigation system 132 of the vehicle 102 to determine the locational coordinates associated with the (location of the) vehicle 102. In particular, as the vehicle 102 is being driven or is parked, the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a. The location determinant module 148 may also access the barrier profile stored on the storage unit 116 to retrieve the geo-location associated with the barrier 104. Upon retrieving the geo-location associated with the barrier 104, the location determinant module 148 may communicate with the navigation system 132 to determine if the vehicle 102 is within a predetermined distance (e.g., within a 0-200 yards) of the geo-location associated with the barrier 104.
If the navigation system 132 determines that the vehicle 102 is within the predetermined vicinity of the geo-location associated with the barrier 104, the location determinant module 148 may communicate with the navigation system 132 to further determine if the locational coordinates associated with the vehicle 102 match (e.g., within a predetermined GPS geo-fence threshold that may encompass portions of the area enclosed by the barrier 104) the geo-location associated with the barrier 104.
In one embodiment, when the navigation system 132 determines that the locational coordinates associated with the vehicle 102 match the geo-location associated with the barrier 104, the navigation system 132 may communicate respective data to the location determinant module 148. The location determinant module 148 may determine that the vehicle 102 is located within the area enclosed by the barrier 104 and may communicate the location of the vehicle 102 to the other modules 148-156 of the application 106. Similarly, when the navigation system 132 determines that the locational coordinates associated with the vehicle 102 are not including the area enclosed by the barrier 104 but are within the predetermined vicinity of the geo-location associated with the barrier 104, the navigation system 132 may communicate respective data to the location determinant module 148. The location determinant module 148 may determine that the vehicle 102 is located within the predetermined vicinity of the barrier 104 and may communicate the location of the vehicle 102 to the other modules 148-156 of the application 106.
In one or more embodiments, the location determinant module 148 may determine when the vehicle 102 is arriving towards the barrier 104 or departing from the barrier 104 based on the stored geo-location of the barrier 104. In particular, when the location determinant module 148 determines that the vehicle 102 is not located within the area enclosed by the barrier 104 or within the predetermined vicinity of the barrier 104, but that the vehicle 102 is located within the predetermined distance of the geo-location associated with the barrier 104, the location determinant module 148 may communicate with the vehicle dynamics sensors 138 to determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven). If it is determined that the vehicle 102 is enabled and is moving, the location determinant module 148 may communicate with the navigation system 132 to utilize the GPS 132 a and the map database 132 b to evaluate if the vehicle 102 is being driven away from geo-location associated with the barrier 104. If the navigation system 132 determines that a distance between the locational coordinates of the vehicle 102, as provided by the GPS 132 a and the geo-location of the barrier 104 are increasing, the navigation system 132 may communicate respective data to the location determinant module 148. The location determinant module 148 may determine that the vehicle 102 is departing away from the barrier 104 and may communicate the location and traveling direction of the vehicle 102 to the other modules 148-154 of the application 106.
If the location determinant module 148 determines that the vehicle 102 is not located within the first predetermined distance of the geo-location associated with the barrier 104, the location determinant module 148 may communicate with the vehicle dynamics sensors 138 to determine if the vehicle 102 is enabled (e.g., engine is enabled) and is moving (e.g., vehicle 102 is being driven). If it is determined that the vehicle 102 is enabled and is moving, the location determinant module 148 may communicate with the navigation system 132 to determine if the vehicle 102 is located within an additional predetermined distance (e.g., 1 mile) of the geo-location associated with the barrier 104 and if the vehicle 102 is arriving towards the barrier 104. In particular, if the navigation system 132 determines that the vehicle 102 is located within the additional predetermined distance of the barrier 104, the navigation system 132 may utilize the GPS 132 a and the map database 132 b to evaluate if the vehicle 102 is being driven towards the geo-location associated with the barrier 104. If the navigation system 132 determines that a distance between the locational coordinates of the vehicle 102, as provided by the GPS 132 a and the geo-location of the barrier 104 is decreasing, the navigation system 132 may communicate respective data to the location determinant module 148. The location determinant module 148 may determine that the vehicle 102 is arriving towards the barrier 104 and may communicate the location and traveling direction of the vehicle 102 to the other modules 148-156 of the application 106.
In one embodiment, during daily operation of the vehicle 102, when the vehicle 102 is determined to be arriving towards the barrier 104 or departing away from the barrier 104, the image sensors 134, and the RADAR/LADAR sensors 136 may make one or more sensor based determinations that pertain to the full expanse of the movement path of the barrier 104 at one or more geo-locations. In particular, one or more geo-locations may be utilized as sensing locations that are applied during the arrival of the vehicle 102 towards the barrier 104 to sense and determine if at least one object and/or at least one individual is located within the movement path of the barrier 104. Additionally, one or more geo-locations may be utilized as sensing locations that are applied during the departure of the vehicle 102 from the barrier 104 to sense and determine if at least one individual and/or object is located within the movement path of the barrier 104. More specifically, the sensing locations may be determined based on the capability of the image sensors 134 to capture images of the full expanse of the movement path of barrier 104 and/or the capability of the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier 104.
In an exemplary embodiment, respective (e.g., separate) sensing locations may be applied by the location determinant module 148 that are applicable when the vehicle 102 is arriving towards the barrier 104 and when the vehicle 102 is departing away from the barrier 104. The sensing locations may be determined by the location determinant module 148 based on foremost locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may initially sense a full expanse of the movement path of the barrier 104 as the vehicle 102 arrives towards the barrier 104 or departs away from the barrier 104. For example, the sensing locations may be respectively provided at geo-locations that are located a certain distance from the barrier 104 at which the image sensors 134 are capable of capturing and providing stereoscopic images of the full expanse of the movement path of the barrier 104 when the vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104.
In some embodiments, the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the moving path of the barrier 104 may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 may be able to sense obstacles within the full expanse of the movement path of the barrier 104. The aggregation of geo-locations may be made to determine sensing locations that are based collectively on image data and sensor wave data that are respectively applicable during the arrival of the vehicle 102 towards the barrier 104 and during the departure of the vehicle 102 away from the barrier 104.
In one or more embodiments, the image sensors 134 and the RADAR/LADAR sensors 136 may additionally determine attributes related to the barrier 104 and the surrounding environment of the barrier 104, hereinafter referred to as barrier attributes. The barrier attributes may include, but may not be limited to, a moving direction of the barrier 104 that may include an upward/downward movement, inward/outward movement, as the barrier 104 is traversed to the opened state or the closed state, and data pertaining to the driveways/roads leading up to the barrier 104 (e.g., slope of the driveway leading up to and at the movement path of the barrier 104).
Upon determining the sensing locations applicable during the arrival of the vehicle 102 towards the barrier 104 and during the departure of the vehicle 102 away from the barrier 104, the location determinant module 148 may continually populate the data pertaining to the sensing locations within the barrier profile associated with the barrier 104 and stored on the storage unit 116. Additionally, the location determinant module 148 may populate the barrier attributes within the barrier profile associated with the barrier 104 to be utilized by the barrier control application 106. In some embodiments, the barrier status determinant module 152 may access the barrier attributes from the barrier profile to more accurately evaluate sensor data provided by the vehicle sensors 124 to detect the presence of at least one individual and/or at least one object that is located within the movement path of the barrier 104.
In an exemplary embodiment, the zone determinant module 150 of the barrier control application 106 may provide a plurality of zones associated with the barrier 104. The plurality of zones may include plurality of areas located at a plurality of distances from the barrier 104 and may be provided at specific locations based on the sensing locations utilized during the arrival or departure of the vehicle 102. The plurality of zones may be used to trigger the sending (e.g., transmission) of RF signals by the vehicle communication system 128 to the transceiver 140 operably connected to the barrier controller 108. As discussed in more detail below, one or more specific zones of the plurality of zones may be associated with the barrier 104 and utilized to send one or more specific signals from the barrier status determinant module 152 or the barrier control module 154 (via the vehicle communication system 128) to the barrier controller 108 (via the transceiver 140) when the vehicle 102 is determined to be arriving towards the barrier 104 and entering the zone(s).
Additionally, one or more specific zones of the plurality of zones may be associated with the barrier 104 and utilized to send one or more specific signals from the barrier status determinant module 152 or the barrier control module 154 to the barrier controller 108 when the vehicle 102 is determined to be departing away from the barrier 104 and exiting the zone(s). In particular, the plurality of zones may be specifically associated with the location and/or traveling direction of the vehicle 102 as communicated by the location determinant module 148 when it is determined that the vehicle 102 is arriving towards the barrier 104 or departing away from the barrier 104, as discussed above.
In one or more embodiments, when the vehicle 102 is determined to enter or exit one or more of the respective zones, the barrier status determinant module 152 may utilize the vehicle communication system 128 to send (e.g., transmit) at least one status request signal to the barrier controller 108 to determine the state of the barrier 104. The barrier status determinant module 152 may also analyze sensor data provided by the vehicle sensor 124 upon determining that the vehicle 102 is within a sensing distance of the barrier 104 to determine if the individual(s) and/or object(s) is located within the movement path of the barrier 104. If the barrier status determinant module 152 does not determine that the individual(s) and/or object(s) are located within the movement path of the barrier 104, when the vehicle 102 is determined to enter or exit one or more of the respective zones, the barrier control module 154 may automatically send at least one barrier control signal to the barrier controller 108 to actuate the automatic movement of the barrier 104 to traverse the barrier 104 to the opened state or the closed state based on the traveling direction of the vehicle 102.
FIG. 2 is an illustrative example of the plurality of zones associated with the barrier 104 that may be applied when the vehicle 102 is determined to be arriving towards the barrier 104 according to an exemplary embodiment. As shown in the illustrative example of FIG. 2, a boundary 202 a of an arrival status zone 202 b may be determined by the zone determinant module 150 and may be provided as an RF communication trigger point for the barrier status determinant module 152 to utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals (e.g., RF signals) to the transceiver 140 to be evaluated by the barrier controller 108. Additionally a boundary 206 a of a barrier opening zone 206 b may be determined by the zone determinant module 150 and may be provided as an automatic trigger point for the barrier control system 130 to send the barrier control signal(s) to the barrier 104 to automatically move the barrier 104.
In one embodiment, during the sensor training mode, the zone determinant module 150 may communicate with the image sensors 134 and the RADAR/LADAR sensors 136 to determine specific sensing locations 204 within the predetermined vicinity of the barrier 104 as the vehicle 102 is arriving towards the barrier 104. In other words, the sensing locations 204 may be determined based on foremost locations during the arrival of the vehicle 102 towards the barrier 104 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may sense the full expanse movement path of the barrier 104. For example, the sensing locations 204 may be provided at a furthest distance from the barrier 104 at which the image sensors 134 are capable of capturing and providing stereoscopic images of the movement path of the barrier 104. Also, the sensing locations 204 may be provided at a furthest distance from the barrier 104 at which the RADAR/LADAR sensors 136 are able to send and receive radar waves/light pulses and sense obstacles within the full expanse of the movement path that may be used to determine if individual(s) and/or object(s) may be located within the movement path of the barrier 104.
In one embodiment, the zone determinant module 150 may determine the location at which to provide the boundary 202 a of the arrival status zone 202 b as a location that ensures that the sensing locations 204 are located within the arrival status zone 202 b to accordingly determine if at least one individual and/or at least one object is located within the moving path of the barrier 104 at an earliest possible point in time with respect to the vehicle 102 approaching the barrier 104. More particularly, the location of the boundary 202 a of the arrival status zone 202 b may be provided for the barrier status determinant module 152 to have an adequate amount of time to inhibit sending of the barrier control signal before the vehicle 102 enters the barrier opening zone 206 b.
In some embodiments, in addition to taking the sensing locations 204 into account when determining the location of the boundary 202 a of the arrival status zone 202 b, the zone determinant module 150 may take into account the location at which the vehicle 102 may transmit and receive RF signals to successfully communicate with the barrier controller 108 at an earliest point in time to determine the current state of the barrier 104. This functionality may ensure that the barrier control signal(s) is sent to traverse the barrier 104 to the opened state as the vehicle 102 approaches the barrier 104 upon determining that the moving path of the barrier 104 is clear without requiring the vehicle 102 to stop and wait for the barrier 104 to fully traverse to the opened state.
In an exemplary embodiment, upon determining the location of the arrival status zone 202 b, the zone determinant module 150 may store a plurality of GPS coordinates associated with the boundary 202 a of the arrival status zone 202 b. In one or more embodiments, the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 202 a of the arrival status zone 202 b. Upon determining the plurality of GPS coordinates associated with the portions of the boundary 202 a, the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150.
Upon determining the location of the arrival status zone 202 b, the zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 202 a of the arrival status zone 202 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the status request signal(s) to the barrier controller 108 upon the vehicle 102 entering the arrival status zone 202 b during the arrival of the vehicle 102 towards the barrier 104.
Upon sending the status request signal(s), as the vehicle 102 continues to travel towards the barrier 104, the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 204 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the movement path of the barrier 104. As the vehicle 102 continues to travel and arrive towards the barrier 104, the location determinant module 148 may communicate with the barrier status determinant module 152 when the vehicle 102 reaches one of the sensing locations 204. The barrier status determinant module 152 may responsively communicate with the image sensors 134 and/or the RADA/LADAR sensors 136 to receive image data and/or sensor wave data and may analyze the data to determine if the individual(s) and/or the object(s) is located within the movement path of the barrier 104. Consequently, the barrier status determinant module 152 may inhibit the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 enters the barrier opening zone 206 b or may allow the sending of the barrier control signal(s) when the vehicle 102 enters the barrier opening zone 206 b based on if the individual(s) and/or object(s) are determined to be located within the movement path of the barrier 104.
In an exemplary embodiment, the zone determinant module 150 may determine the barrier opening zone 206 b at a determined distance from the barrier 104. As shown in the illustrative example of FIG. 2, in one embodiment, the size of the barrier opening zone 206 b may be based on one or more variables that ensures that the boundary 206 a of the barrier opening zone 206 b may be provided at a determined adequate distance from the sensing locations 204 and the barrier 104 for the application 106 to inhibit or allow the sending of the barrier control signal(s) to traverse the barrier 104 to the opened state as the vehicle 102 approaches the barrier 104. The zone determinant module 150 may determine the boundary 206 a of the barrier opening zone 206 b at a determined adequate distance (e.g., 50 m) from the boundary 202 a of the arrival status zone 202 b and the determined adequate distance (e.g., 30 m) from the sensing locations 204. In particular, upon sending the status request signal(s) to determine the status of the barrier 104, the vehicle 102 will travel the determined adequate distances and the vehicle sensors 124 will sense the movement path of the barrier 104 to be analyzed as the vehicle 102 continues to travel toward the barrier 104 before possibly sending the barrier control signal(s) when the vehicle 102 enters the barrier opening zone 206 b.
In some embodiments, in addition to taking the location of the arrival status zone 202 b and the sensing locations 204 into account, the zone determinant module 150 may analyze data pertaining to the surrounding environment of the vehicle 102 provided by the map database 132 b and may also determine the barrier opening zone 206 b according to one or more environmental variables. The one or more environmental variables may include, but are not limited to, the length of the street(s) 208 within the vicinity of the barrier 104, the length of the driveway(s) 210 leading up to the barrier 104, the location of the surrounding structures/object(s) within the vicinity of the barrier 104, and the like.
In particular, the zone determinant module 150 may determine the size of the barrier opening zone 206 b to ensure that the barrier control signal(s) may be transmitted to the transceiver 140 at a time that the vehicle 102 is at a requisite distance from the barrier 104. This functionality may ensure that upon determining that the movement path of the barrier 104 is clear, the barrier control signal(s) are sent at an appropriate time to fully open the barrier 104 upon the arrival of the vehicle 102 towards the barrier 104 without compromising the security of contents located behind the barrier 104. For example, in a scenario where the barrier 104 is located further from a street 208 that is used to approach the barrier 104, the barrier opening zone 206 b may include a smaller area surrounding the barrier 104 than a scenario where the barrier 104 is located closer to the street 208.
Upon determining the location of the barrier opening zone 206 b, the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 206 a of the barrier opening zone 206 b. Upon determining the plurality of GPS coordinates associated with the portions of the boundary 206 a, the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150.
The zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 206 a of the barrier opening zone 206 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the barrier control signal(s) to the barrier controller 108 upon the vehicle 102 entering the barrier opening zone 206 b during the arrival of the vehicle 102 towards the barrier 104.
It is to be appreciated that the zone determinant module 150 may determine multiple respective arrival status zones and barrier opening zones that may be utilized for multiple barriers. Additionally, multiple sensing locations may be applied by the location determinant module 148 that may be utilized with respect to multiple barriers. For example, if the home of the user includes a gate as a first barrier and a garage door as a second barrier, the location determinant module 148 may determine sensing locations specifically pertaining to the gate and sensing locations specifically pertaining to the garage door as the vehicle 102 arrives towards the gate and the garage door. Additionally, the zone determinant module 150 may determine an arrival status zone pertaining to the gate and a separate arriving barrier status zone pertaining to the garage door. The zone determinant module 150 may further determine a barrier opening zone pertaining to the gate and a separate barrier opening zone pertaining to the garage door.
FIG. 3 is an illustrative example of the plurality of zones associated with the barrier 104 that may be applied when the vehicle 102 is determined to be departing away from the barrier 104 according to an exemplary embodiment. As shown in the illustrative example of FIG. 3, a departure status zone 302 b may be determined by the zone determinant module 150 and may be provided as an RF communication trigger point for the barrier status determinant module 152 to utilize the vehicle communication system 128 to send at least one status request signal to the transceiver 140 to be evaluated by the barrier controller 108. Additionally, a boundary 306 a of a barrier closing zone 306 b may be determined by the zone determinant module 150 and may be provided as an automatic trigger point for the barrier control system 130 to send the barrier control signal(s) to the barrier 104 to automatically move the barrier 104.
In particular, as the vehicle 102 is departing from the barrier 104 (e.g., reversing away from the barrier 104), the vehicle 102 may exit the departure status zone 302 b by crossing a boundary 302 a of the departure status zone 302 b. Upon crossing the boundary 302 a, the barrier status determinant module 152 may utilize the vehicle communication system 128 to determine the current status of the barrier 104. As discussed below in more detail, the current status of the barrier 104 may be used to determine if the barrier control module 154 may send the barrier control signal(s) to traverse the barrier 104 to the closed state upon the vehicle 102 exiting a barrier closing zone 306 b if it is determined that the movement path of the barrier 104 is clear.
In one or more embodiments, the zone determinant module 150 may determine the location and size of the departure status zone 302 b according to sensing locations 304 that are determined within the predetermined vicinity of the barrier 104. In one embodiment, upon determining the current status of the barrier 104, as the vehicle 102 continues to travel away from the barrier 104, the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 304 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of sensing the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104. As the vehicle 102 continues to travel away from the barrier 104, the location determinant module 148 may communicate with the barrier status determinant module 152 when the vehicle 102 reaches one of the sensing locations 304. The barrier status determinant module 152 may responsively communicate with the image sensors 134 and/or the RADA/LADAR sensors 136 to receive image data and/or sensor wave data and may analyze the data to determine if at least one individual and/or at least one object is located within the movement path of the barrier 104. Consequently, the barrier status determinant module 152 may inhibit the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 exits the barrier closing zone 306 b or may allow the sending of the barrier control signal(s) when the vehicle 102 exits the barrier closing zone 306 b based on if the individual(s) and/or object(s) are determined to be located within the movement path of the barrier 104.
In one embodiment, the zone determinant module 150 may determine the location at which to provide the boundary 302 a of the departure status zone 302 b as a location that ensures that the sensing locations 304 are located within the departure status zone 302 b to accordingly determine if the individual(s) and/or object(s) are located within the moving path of the barrier 104 at an earliest possible point in time before the vehicle 102 enters the barrier closing zone 306 b. More particularly, the location of the boundary 302 a of the departure status zone 302 b may be provided for the barrier status determinant module 152 to have an adequate amount of time to inhibit sending of the barrier control signal before the vehicle 102 exits the barrier closing zone 306 b.
In some embodiments, in addition to taking the sensing locations 304 into account when determining the location of the boundary 302 a of the departure status zone 302 b, the zone determinant module 150 may also take into account the location at which the vehicle 102 may determine the current status of the barrier 104 at a requisite time to determine if the movement path of the barrier 104 is clear to allow or inhibit the sending of the barrier control signal(s) as the vehicle 102 departs away from the barrier 104. Upon determining the departure status zone 302 b at the first determined distance from the barrier 104, the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 402 a of the departure status zone 302 b.
Upon determining the plurality of GPS coordinates associated with the portions of the boundary 302 a of the departure status zone 302 b, the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150. The zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 302 a of the departure status zone 302 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the status request signal(s) to the barrier controller 108 upon the vehicle 102 exiting the departure status zone 302 b during the departure of the vehicle 102 away from the barrier 104.
In an exemplary embodiment, the zone determinant module 150 may additionally determine the barrier closing zone 306 b at a determined distance from the barrier 104 and the sensing locations 304. With continued reference to the illustrative example of FIG. 3, in one embodiment, the size of the barrier closing zone 306 b may be based on one or more variables that ensures that the boundary 306 a of the barrier closing zone 306 b may be provided at a determined adequate distance from the sensing locations 204 and the barrier 104 for the application 106 to allow or inhibit the sending of the barrier control signal(s) to traverse the barrier 104 to the closed state before the vehicle 102 is out of a RF communication range with the barrier controller 108. In particular, the zone determinant module 150 may determine that the boundary 306 a of the barrier closing zone 306 b is to be provided at a determined adequate distance (e.g., 50 m) from the boundary 302 a of the departure status zone 302 b and the determined adequate distance (e.g., 30 m) from the sensing locations 304. As an illustrative example, upon sending the status request signal(s) to determine the status of the barrier 104, the vehicle 102 will travel the determined adequate distances and the vehicle sensors 124 will sense the movement path of the barrier 104 to be analyzed as the vehicle 102 continues to travel away from the barrier 104 before possibly sending the barrier control signal(s) when the vehicle 102 exits the barrier closing zone 306 b or inhibiting the sending of the barrier control signal(s).
In some embodiments, in addition to taking the location of the departure status zone 302 b and the sensing locations 304 into account, the zone determinant module 150 may analyze data pertaining to the surrounding environment of the vehicle 102 provided by the map database 132 b and may also determine the barrier closing zone 306 b according to one or more environmental variables. For instance, the zone determinant module 150 may analyze the length of the street(s) 308 within the vicinity of the barrier 104, the length of the driveway(s) 310 leading up to the barrier 104, the location of the surrounding structures/object(s) within the vicinity of the barrier 104, and the like. In particular, the zone determinant module 150 may determine the size of the barrier closing zone 306 b to ensure that the barrier control signal(s) may be transmitted to the transceiver 140 at a time that the vehicle 102 is at a requisite distance from the barrier 104. This functionality may ensure that upon determining that the movement path of the barrier 104 is clear, the barrier control signal(s) are sent at an appropriate time to fully close the barrier 104 during the departure of the vehicle 102 away from the barrier 104 before the vehicle communication system 128 is out of RF communication range with the transceiver 140. For example, in a scenario where the barrier 104 is located at the end of a long driveway 310 that is used to depart away from the barrier 104, the barrier closing zone 306 b may include a smaller area surrounding the barrier 104 than a scenario where the barrier 104 is located at an end of a short driveway 310.
In an exemplary embodiment, upon determining the barrier closing zone 306 b, the zone determinant module 150 may communicate with the navigation system 132 to determine the plurality of GPS coordinates (e.g., latitude x, longitude y) of the areas that include the boundary 306 a of the barrier closing zone 306 b. Upon determining the plurality of GPS coordinates associated with the portions of the boundary 306 a, the navigation system 132 may communicate the plurality of GPS coordinates to the zone determinant module 150. The zone determinant module 150 may access the barrier profile associated with the barrier 104 stored on the storage unit 116 and may populate the plurality of GPS coordinates associated with portions of the boundary 306 a of the barrier closing zone 306 b. As discussed below, the plurality of GPS coordinates populated within the barrier profile may be evaluated in order to send the barrier control signal(s) to the barrier controller 108 upon the vehicle 102 exiting the barrier closing zone 306 b during departure of the vehicle 102 away from the barrier 104.
It is to be appreciated that the zone determinant module 150 may determine multiple respective departure status zones and barrier closing zones that may be utilized for multiple barriers. Additionally, multiple sensing locations may be applied by the location determinant module 148 that may be utilized with respect to multiple barriers. For example, if the home of the user includes a gate as a first barrier and a garage door as a second barrier, the location determinant module 148 may determine sensing locations specifically pertaining to the gate and sensing locations specifically pertaining to the garage door as the vehicle 102 departs from the garage door and the gate. Additionally, the zone determinant module 150 may determine a departure status zone pertaining to the gate and a separate departure status zone pertaining to the garage door. The zone determinant module 150 may further determine a barrier closing zone pertaining to the gate and a separate barrier closing zone pertaining to the garage door.
FIG. 4A is a process flow diagram of a method 400 for inhibiting or providing automatic movement of the barrier 104 when the vehicle 102 is determined to be arriving towards the barrier 104 according to an exemplary embodiment. FIG. 4A will be described with reference to the components of FIG. 1 though it is to be appreciated that the method 400 of FIG. 4A may be used with other systems and/or components. Additionally, the method 400 of FIG. 4A will be described with reference to the illustrative example of FIG. 2. The method 400 may begin at block 402, wherein the method 400 may include determining if the vehicle 102 enters the arrival status zone 202 b. As discussed, when the location determinant module 148 determines that the vehicle 102 is arriving towards the barrier 104, the location determinant module 148 may communicate the location of the vehicle 102 and the traveling direction of the vehicle 102 to the zone determinant module 150. As discussed above, the zone determinant module 150 may determine the plurality of zones associated with the barrier 104 that specifically pertain to the arrival of the vehicle 102 towards the barrier 104.
Upon determining the arrival status zone 202 b, the zone determinant module 150 may populate the barrier profile associated with the barrier 104 with the plurality of GPS coordinates associated with portions the boundary 202 a of the arrival status zone 202 b. In one embodiment, as the vehicle 102 is being driven, the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a.
The location determinant module 148 may also access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is entering any of the portions of the boundary 202 a of the arrival status zone 202 b. More specifically, the location determinant module 148 may continually compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 202 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 202 a, the location determinant module 148 may determine that the vehicle 102 enters the arrival status zone 202 b. For example, if the vehicle 102 is being driven towards the barrier 104, the vehicle 102 may enter the arrival status zone 202 b. In such a scenario, the location determinant module 148 may determine when the vehicle 102 enters the arrival status zone 202 b once the vehicle 102 crosses one of the portions of the boundary 202 a.
If it is determined that the vehicle 102 enters the arrival status zone 202 b (at block 402), the method 400 may proceed to block 404, wherein the method 400 may include sending at least one status request signal to the barrier controller 108. In an exemplary embodiment, upon the location determinant module 148 determining that the vehicle 102 is crossing one of the portions of the boundary 202 a to enter the arrival status zone 202 b, the location determinant module 148 may communicate respective data to the barrier status determinant module 152. The barrier status determinant module 152 may responsively utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals to the transceiver 140 to be evaluated by the barrier controller 108 to determine the current state of the barrier 104. In other words, the barrier status determinant module 152 may send the status request data signal(s) to determine if the barrier 104 is currently in the opened state, the closed state, or the partially opened state.
The method 400 may proceed to block 406, wherein the method 400 may include receiving at least one current state data signal from the barrier controller 108. In one or more embodiments, the barrier controller 108 may evaluate the one or more status request signals received by the transceiver 140 and may determine the current state of the barrier 104. The barrier controller 108 may determine the current state as the opened state when the barrier 104 is in a fully opened positon. Additionally, the barrier controller 108 may determine the current state as the closed state when the barrier 104 is in a fully closed positon. In some embodiments, the barrier controller 108 may determine the current state of the barrier 104 as the partially opened state when the barrier 104 is partially opened. The barrier controller 108 may further determine the barrier traversing level of the barrier 104 (e.g., 65% open) when the current state of the barrier 104 is the partially opened state.
In an exemplary embodiment, upon determining the current state of the barrier 104, the barrier controller 108 may utilize the transceiver 140 to communicate the one or more current state data signals that include the current state of the barrier 104 as the opened state, the closed state, or the partially opened state to the vehicle communication system 128. In some embodiments, when the barrier 104 is determined to be in the partially opened state, the current data state data signal(s) may additionally include the barrier traversing level of the barrier 104. Upon evaluating the current state of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to evaluate the current state of the barrier 104.
The method 400 may proceed to block 408, wherein the method 400 may include determining if the barrier 104 is in the closed state or the partially opened state. As discussed above, upon evaluating the current state of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to evaluate the current state of the barrier 104. The barrier control module 154 may evaluate the current state and determine if the barrier 104 is in the closed state or the partially opened state as communicated by the barrier controller 108 (at block 406).
If it is determined that the current state of the barrier 104 is the closed state or the partially opened state (at block 408), the method 400 may proceed to block 410, wherein the method 400 may include determining if the vehicle 102 reaches one or more sensing locations. As discussed above, during daily operation of the vehicle 102, when the vehicle 102 is determined to be arriving towards the barrier 104, the image sensors 134, and/or the RADAR/LADAR sensors 136 may be able to make one or more sensor based determinations that may include specific geo-locations within the vicinity of the barrier 104 at which the sensing locations 204 are determined and applied. With respect to the approach of the vehicle 102 towards the barrier 104, the sensing locations 204 applied by the location determinant module 148 may be determined based on the foremost locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may initially sense the full expanse of the movement path of the barrier 104. As discussed above, the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the movement path of the barrier 104 may be utilized separately or may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 are initially capable of sensing obstacles within the full expanse of the movement path of the barrier 104.
In one embodiment, upon sending the status request signal(s), as the vehicle 102 continues to travel towards the barrier 104, the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 204 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the full expanse of the movement path of the barrier 104. As the vehicle 102 continues to travel and arrive towards the barrier 104, the location determinant module 148 may utilize information related to the sensing locations 204 retrieved from the barrier profile to determine that the vehicle 102 reaches one of the sensing locations 204.
In another embodiment, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signals sent by the image sensors 134 that indicate that the sensors 134 are able to and/or are capturing images of the full expanse of the movement path of the barrier 104 as the vehicle 102 is arriving towards the barrier 104. Additionally, or alternatively, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signals sent by the RADAR/LADAR sensors 136 that the sensors 136 are capable of and/or are sensing obstacles that may be located within the full expanse of movement path of the barrier 104.
If it is determined that the vehicle 102 reaches one or more of the sensing locations 204 (at block 410), the method 400 may proceed to block 412, wherein the method 400 may include communicating with the image sensors 134 and/or the RADAR/LADAR sensors 136 of the vehicle 102 to receive sensor data. In an exemplary embodiment, upon determining that the vehicle 102 has reached one of the sensing locations 204, the location determinant module 148 may communicate respective data to the barrier status determinant module 152.
The method 400 may proceed to block 414, wherein the method 400 may include receiving sensor data from the image sensors 134 and/or the RADAR/LADAR sensors 136. In one or more embodiments, upon receiving data from the location determinant module 148 pertaining to the vehicle 102 reaching one of the sensing locations 204, the barrier status determinant module 152 may responsively communicate with the image sensors 134 to receive image data and/or the RADAR/LADAR sensors 136 to receive sensor wave data pertaining to the movement path of the barrier 104.
The method 400 may proceed to block 416, wherein the method 400 may include determining if the sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136. In one embodiment, the barrier status determinant module 152 may determine that sensor data is received from both of the image sensors 134 and the RADAR/LADAR sensors 136 based on the receipt of image data and sensor wave data respectively from the image sensors 134 and the RADAR/LADAR sensors 136. Alternatively, if the barrier status determinant module 152 only receives image data or only receives sensor wave data, upon the vehicle 102 reaching one of the sensing locations, the barrier status determinant module 152 may determine that the sensor data is not received from both sensors 134, 136.
If it is determined that sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136 (at block 416), the method 400 may proceed to block 418, wherein the method 400 may include aggregating sensor data received from the image sensors 134 and the RADAR/LADAR sensors 136. In an exemplary embodiment, upon the receipt of the image data from the image sensors 134 and the sensor data from the RADAR/LADAR sensors 136, the barrier status determinant module 152 may utilize a sensor data fusion logic to aggregate the image data and the sensor wave data. In other words, data pertaining to one or more images of the movement path of the barrier 104 captured by the image sensors 134 and/or the sensing of one or more possible obstacles located within the movement path of the barrier 104 may be combined in order to be analyzed as an aggregated sensor data package.
The method 400 may proceed to block 420, wherein the method 400 may include analyzing the sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104. In one embodiment, upon receiving image data from the image sensors 134, the sensor wave data from the RADAR/LADAR sensors 136, or upon aggregating the image data and the sensor wave data into the aggregated sensor data package, the barrier status determinant module 152 may utilize logic to process the image data, sensor wave data, and/or the aggregated data package. In one or more embodiments, the logic may include processing techniques such as feature extraction, RADAR/LADAR wave data evaluation, pattern recognition, density analysis, refraction analysis, reflection analysis, target analysis, and/or additional sensing analysis techniques that may be utilized or executed as part of one or more algorithms to analyze the sensor data to determine if at least one individual and/or at least one object is located within the movement path of the barrier 104.
In one or more embodiments, the logic may take into account the barrier attributes that are retrieved from the barrier profile that may include, but are not limited to, the moving direction of the barrier 104 and data pertaining to driveways/roads leading up to the barrier 104 to more accurately determine if at least one individual and/or at least one object is located within the movement path of the barrier 104. In particular, the direction of the barrier 104 as it's opened and the slope of a surface leading up to the barrier 104 may be accounted for when determining if the individual(s) and/or object(s) are located within the movement path.
In an additional embodiment, the barrier status determinant module 152 may utilize the TCU 120 to communicate with the external server infrastructure 144 through the internet cloud 126 to access and analyze barrier image data provided by the barrier controller 108 in addition to the aforementioned sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104. As discussed above, in one embodiment, the plurality of cameras of the barrier image sensors 146 may be disposed above/adjacent to the barrier 104 or within the area enclosed by the barrier 104 to capture images/video of the moving path of the barrier 104 and respective barrier image data may be stored on the external server infrastructure 144 to be accessed and evaluated by the barrier movement control application 106.
The method 400 may proceed to block 422, wherein the method 400 may include determining at least one individual and/or at least one object located within the movement path of the barrier 104. In an exemplary embodiment, upon utilizing the logic to analyze the image data, sensor wave data, the barrier image data and/or the aggregated data package, the barrier status determinant module 152 may determine if at least one individual and/or at least one object is located within the movement path of the barrier 104. In other words, based on the analysis of the image data, sensor wave data, and/or the aggregated data, the barrier status determinant module 152 may determine if one or more individuals and/or one or more objects is located within the movement path of the barrier 104 that may obstruct the automatic opening of the barrier 104 as the vehicle 102 arrives towards the barrier 104.
If it is determined that at least one individual and/or at least one object is located within the movement path of the barrier 104 (at block 422), the method 400 may proceed to block 424, wherein the method 400 may include inhibiting sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state. In an exemplary embodiment, upon determining that at least one individual and/or at least one object is located within the movement path of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154. Upon receiving the respective data indicating the presence of at least one individual and/or at least one object within the movement path of the barrier 104, the barrier control module 154 may ensure that data is sent to the vehicle communication system 128 to thereby inhibit the sending of the barrier control signal(s) to the barrier controller 108 associated with the barrier 104. Consequently, the barrier status determinant module 152 inhibits the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 enters the barrier opening zone 206 b based on the determination of the at least one individual and/or at least one object within the movement path of the barrier 104.
The method 400 may proceed to block 426, wherein the method 400 may include presenting the barrier status user interface with the barrier movement inhibition alert. In an exemplary embodiment, upon the barrier control module 154 receiving the data pertaining to the inhibition of the sending at least one barrier control signal to the barrier controller 108, the barrier control module 154 may communicate respective data to the barrier status presentation module 156. The barrier status presentation module 156 may responsively communicate with the infotainment system 118 of the vehicle 102 to present the barrier movement inhibition alert on the display unit 114. As discussed below, with respect to FIG. 6, the barrier movement inhibition alert may include a manual barrier movement user input that may be inputted by the user to allow the sending of the barrier control signal to move the barrier 104.
FIG. 4B is an illustrative example of a scenario in which the barrier control application 106 may inhibit sending of at least one barrier control signal during the arrival of the vehicle 102 towards the barrier 104 according to an exemplary embodiment. As shown, the barrier 104 which is included as an entry gate 432 may be automatically opened to allow the vehicle 102 to enter a premises upon the arrival of the vehicle 102. However, based on the analysis of sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 (as discussed with respect to block 420), the barrier status determinant module 152 may determine that an object 434 may be located within the movement path of the entry gate 432. Therefore, the barrier control module 154 may inhibit sending of the at least one barrier control signal to the barrier controller 108 to thereby inhibit the automatic opening of the entry gate 432.
With reference again to FIG. 4A, if it is determined that at least one individual and/or at least one object is not located within the movement path of the barrier 104 (at block 422), the method 400 may proceed to block 428, wherein the method 400 may include determining if the vehicle 102 enters the barrier opening zone 206 b. Upon the vehicle 102 entering the arrival status zone 202 b, the vehicle 102 may continue to travel through the arrival status zone 202 b towards the barrier 104. As the vehicle 102 is traveling through the arrival status zone 202 b and determines that there are no individuals and/or objects located within the movement path of the barrier 104, the location determinant module 148 may access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is entering any of the portions of the boundary 206 a of the barrier opening zone 206 b. More specifically, the location determinant module 148 may continue to compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 206 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 206 a, the barrier control module 154 determines that the vehicle 102 enters the barrier opening zone 206 b.
Upon determining that the vehicle 102 enters the barrier opening zone 206 (at block 428), the method 400 may proceed to block 430, wherein the method 400 may include sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state. In an exemplary embodiment, the barrier control module 154 may utilize the current state of the barrier 104 as the closed state or the partially opened state to accordingly send the one or more barrier control signals to remotely control the movement of the barrier 104 to traverse the barrier 104 to the opened state. More specifically, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the closed state to the opened state. Likewise, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the partially opened state to the (fully) opened state. The barrier controller 108 may evaluate the received barrier control signals and may responsively traverse the barrier 104 from the closed state or partially opened state to the opened state.
In an additional embodiment, upon inhibiting the sending of the barrier control signal(s) to automatically open the barrier 104 (at block 424), the barrier control module 154 may communicate with the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved from the movement path of the barrier 104 before the vehicle 102 enters the barrier opening zone 206 b. The barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object continues to be located within the movement path of the barrier 104. If the barrier status determinant module 152 determines that the at least one individual and/or at least one object is no longer located within the movement path of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154 and may consequently allow the sending of the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the opened state (at block 430).
In one or more embodiments, upon sending the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the opened state (at block 430), the barrier control module 154 may communicate respective data to the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved within the movement path of the barrier 104 after the vehicle 102 has entered the barrier opening zone 206 b and the barrier control signal(s) has been sent to the barrier controller 108. The barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object is (subsequently) located within the movement path of the barrier 104 after the barrier control signal(s) is sent.
In one configuration, if the barrier status determinant module 152 determines that the at least one individual and/or at least one object is located within the movement path of the barrier 104 after the sending of the barrier control signal(s), the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to cease movement of the barrier 104. In another configuration, if the barrier status determinant module 152 determines that the at least one individual and/or at least one object is located within the movement path of the barrier 104 after the sending of the barrier control signal(s), the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to traverse the barrier 104 to the closed state.
FIG. 5A is a process flow diagram of a method 500 for inhibiting or providing automatic movement of the barrier 104 when the vehicle 102 is determined to be departing away from the barrier 104 according to an exemplary embodiment. FIG. 5A will be described with reference to the components of FIG. 1 though it is to be appreciated that the method 500 of FIG. 5A may be used with other systems and/or components. Additionally, the method 500 of FIG. 5A will be described with reference to the illustrative example of FIG. 3. As shown in FIG. 5A, the method 500 may begin at block 502, wherein the method 500 may include determining if the vehicle 102 exits the departure status zone 302 b. In one embodiment, the location determinant module 148 may determine that the vehicle 102 is departing away from the barrier 104 and may communicate the location of the vehicle 102 and the traveling direction of the vehicle 102 to the zone determinant module 150. As discussed above, the zone determinant module 150 may determine the plurality of zones associated with the barrier 104 that specifically pertain to the departure of the vehicle 102 away from the barrier 104.
As discussed above, upon determining the departure status zone 302 b (shown in FIG. 3), the zone determinant module 150 may populate the barrier profile associated with the barrier 104 with the plurality of GPS coordinates associated with portions the boundary 302 a of the departure status zone 302 b. In one embodiment, as the vehicle 102 is being driven, the location determinant module 148 may communicate with the navigation system 132 to continually determine the locational coordinates associated with the vehicle 102 as provided by the GPS 132 a.
The location determinant module 148 may also access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is exiting any of the portions of the boundary 302 a of the departure status zone 302 b. More specifically, the location determinant module 148 may continually compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 302 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 302 a, the location determinant module 148 may determine that the vehicle 102 exits the departure status zone 302 b. For example, if the vehicle 102 is being driven away from the barrier 104 (reversing away from the barrier 104 down the driveway 310), the vehicle 102 may exit the departure status zone 302 b. In such a scenario, the location determinant module 148 may determine when the vehicle 102 exits the departure status zone 302 b once the vehicle 102 crosses one of the portions of the boundary 302 a.
If it is determined that the vehicle 102 exits the departure status zone 302 b (at block 502), the method 500 may procced to block 504, wherein the method 500 may include sending at least one status request signal to the barrier controller 108. In an exemplary embodiment, upon the location determinant module 148 determining that the vehicle 102 is crossing one of the portions of the boundary 302 a to exit the departure status zone 302 b (at block 502), the location determinant module 148 may communicate respective data to the barrier status determinant module 152. The barrier status determinant module 152 may responsively utilize the vehicle communication system 128 to send (e.g., transmit) one or more status request signals to the transceiver 140 to be evaluated by the barrier controller 108 to determine the current state of the barrier 104. In other words, the barrier status determinant module 152 may send the status request data signal(s) to determine if the barrier 104 is currently in the opened state, the closed state, or the partially opened state.
The method 500 may proceed to block 506, wherein the method 500 may include receiving at least one current state data signal from the barrier controller 108. As discussed above, upon determining the current state of the barrier 104, the barrier controller 108 may utilize the transceiver 140 to communicate the one or more current state data signals that include the current state of the barrier 104 as the opened state, the closed state, or the partially opened state to vehicle communication system 128.
The method 500 may proceed to block 508, wherein the method 500 may include determining if the barrier 104 is in the opened state or the partially opened state. Upon receiving the one or more current state data signals that include the current state of the barrier 104, the vehicle communication system 128 may communicate the current state of the barrier 104 to the barrier status determinant module 152. The barrier status determinant module 152 may responsively determine if the current state of the barrier 104 is in the opened state or the partially opened state. This determination may be made by the barrier status determinant module 152 to determine if the user manually actuated movement of the barrier 104 to close the barrier 104 as the vehicle 102 is departing away from the barrier 104.
If it is determined that the current state of the barrier 104 is the open state or the partially opened state at block 508, the method 500 may proceed to block 510, wherein the method 500 may include determining if the vehicle 102 reaches one or more sensing locations. As discussed above, during daily operation of the vehicle 102, when the vehicle 102 is determined to be departing away from the barrier 104, the image sensors 134, and/or the RADAR/LADAR sensors 136 may be able to make one or more sensor based determinations that may include specific areas within the vicinity of the barrier 104 at which the sensing locations 304 are determined.
With respect to the departure of the vehicle 102 away from the barrier 104, the sensing locations 304 are applied by the location determinant module 148 may be determined based on the locations at which the image sensors 134 and/or the RADAR/LADAR sensors 136 may sense the full expanse of the movement path of the barrier 104. As discussed above, the geo-locations at which the image sensors 134 are initially capable of capturing images of the full expanse of the movement path of the barrier 104 may be utilized separately or may be aggregated with the geo-locations at which the RADAR/LADAR sensors 136 are initially capable of sensing obstacles within the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104.
In one embodiment, upon sending the status request signal(s), as the vehicle 102 continues to travel away from the barrier 104, the location determinant module 148 may access the barrier profile associated with the barrier 104 to retrieve the sensing locations 304 at which the image sensors 134 and/or the RADAR/LADAR sensors 136 are capable of capturing/sensing the full expanse of the movement path of the barrier 104. As the vehicle 102 continues to travel and depart away from the barrier 104, the location determinant module 148 may utilize information related to the sensing locations 304 retrieved from the barrier profile to determine that the vehicle 102 reaches one of the sensing locations 204.
In another embodiment, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 304 based on the receipt of one or more sensing signals sent by the image sensors 134 that indicate that the sensors 134 are able to and/or are capturing images of the full expanse of the movement path of the barrier 104 as the vehicle 102 is departing away from the barrier 104. Additionally, or alternatively, the location determinant module 148 may determine that the vehicle 102 reaches one of the sensing locations 204 based on the receipt of one or more sensing signal sent by the RADAR/LADAR sensors 136 that the sensors 136 are capable of and/or are sensing obstacles that may be located within the full expanse of movement path of the barrier 104.
If it is determined that the vehicle 102 reaches one or more of the sensing locations 304 (at block 510), the method 500 may proceed to block 512, wherein the method 500 may include communicating with the image sensors 134 and/or the RADAR/LADAR sensors 136 of the vehicle 102 to receive sensor data. In an exemplary embodiment, upon determining that the vehicle 102 has reached one of the sensing locations 304, the location determinant module 148 may communicate respective data to the barrier status determinant module 152.
The method 500 may proceed to block 514, wherein the method 400 may include receiving sensor data from the image sensors 134 and/or the RADAR/LADAR sensors 136. In one or more embodiments, upon receiving data from the location determinant module 148 pertaining to the vehicle 102 reaching one of the sensing locations 304, the barrier status determinant module 152 may responsively communicate with the image sensors 134 to receive image data and/or the RADAR/LADAR sensors 136 to receive sensor wave data pertaining to the movement path of the barrier 104.
The method 500 may proceed to block 516, wherein the method 500 may include determining if the sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136. In one embodiment, the barrier status determinant module 152 may determine that sensor data is received from both of the image sensors 134 and the RADAR/LADAR sensors 136 based on the receipt of image data and sensor wave data respectively from the image sensors 134 and the RADAR/LADAR sensors 136. Alternatively, if the barrier status determinant module 152 only receives image data or only receives sensor wave data upon the vehicle 102 reaching one of the sensing locations, the barrier status determinant module 152 may determine that the sensor data is not received from both sensors 134, 136.
If it is determined that sensor data is received from the image sensors 134 and the RADAR/LADAR sensors 136 (at block 516), the method 500 may proceed to block 518, wherein the method 500 may include aggregating sensor data received from the image sensors 134 and the RADAR/LADAR sensors 136. As discussed above, the barrier status determinant module 152 may utilize sensor data fusion logic to aggregate the image data and the sensor wave data. In other words, data pertaining to one or more images of the movement path of the barrier 104 captured by the image sensors 134 and/or the sensing of one or more possible obstacles located within the movement path of the barrier 104 may be combined in order to be analyzed as an aggregated sensor data package.
The method 500 may proceed to block 520, wherein the method 500 may include analyzing the sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104. In one embodiment, upon receiving image data from the image sensors 134, the sensor wave data from the RADAR/LADAR sensors 136, or upon aggregating the image data and the sensor wave data into the aggregated sensor data package, the barrier status determinant module 152 may utilize logic (discussed above with respect to block 518 of FIG. 5) to process the image data, sensor wave data, and/or the aggregated data package.
In one or more embodiments, the logic may take into account the barrier attributes retrieved from the barrier profile, discussed above, that may include, but are not limited to the moving direction of the barrier 104 and data pertaining to driveways/roads leading up to the barrier 104 to more accurately determine if at least one individual and/or at least one object is located within the movement path of the barrier 104. In particular, the direction of the barrier 104 as it's opened and the slope of a surface leading up to the barrier 104 may be accounted for when determining if the individual(s) and/or object(s) are located within the movement path. In an additional embodiment, the barrier status determinant module 152 may utilize the TCU 120 to communicate with the external server infrastructure 144 through the internet cloud 126 to access and analyze barrier image data provided by the barrier controller 108 in addition to the aforementioned sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104.
The method 500 may proceed to block 522, wherein the method 500 may include determining at least one individual and/or at least one object located within the movement path of the barrier 104. In an exemplary embodiment, upon utilizing the logic to analyze the image data, sensor wave data, the barrier image data and/or the aggregated data package, the barrier status determinant module 152 may determine if at least one individual and/or at least one object is located within the movement path of the barrier 104. In other words, based on the analysis of the image data, sensor wave data, and/or the aggregated data, the barrier status determinant module 152 may determine if one or more individuals and/or one or more objects is located within the movement path of the barrier 104 that may obstruct the automatic closing of the barrier 104 as the vehicle 102 departs away from the barrier 104.
If it is determined that at least one individual and/or at least one object is located within the movement path of the barrier 104 (at block 522), the method 500 may proceed to block 524, wherein the method 500 may include inhibiting sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the opened state. In an exemplary embodiment, upon determining that at least one individual and/or at least one object is located within the movement path of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154. Upon receiving the respective data indicating the presence of at least one individual and/or at least one object within the movement path of the barrier 104, the barrier control module 154 may ensure that data is sent to the vehicle communication system 128 to thereby inhibit the sending of the barrier control signal(s) to the barrier controller 108 associated with the barrier 104. Consequently, the barrier status determinant module 152 inhibits the automatic sending of the barrier control signal(s) that occurs when the vehicle 102 exits the barrier closing zone 306 b based on the determination of the at least one individual and/or at least one object within the movement path of the barrier 104.
The method 500 may proceed to block 526, wherein the method 500 may include presenting the barrier status user interface with the barrier movement inhibition alert. In an exemplary embodiment, upon the barrier control module 154 receiving the data pertaining to the inhibition of the sending at least one barrier control signal to the barrier controller 108, the barrier control module 154 may communicate respective data to the barrier status presentation module 156. The barrier status presentation module 156 may responsively communicate with the infotainment system 118 of the vehicle 102 to present the barrier movement inhibition alert on the display unit 114. As discussed below, with respect to FIG. 6, the barrier movement inhibition alert may include a manual barrier movement user input that may be inputted by the user to allow the sending of the barrier control signal to move the barrier 104.
FIG. 5B is an illustrative example of a scenario in which the barrier control application 106 may inhibit sending of at least one barrier control signal during the departure of the vehicle 102 away from the barrier 104 according to an exemplary embodiment. As shown, the barrier 104 which is included as a garage door 532 may be automatically closed from the fully opened state when the vehicle 102 departs away from the barrier 104. However, based on the analysis of sensor data to determine if at least one individual or at least one object is located within the movement path of the barrier 104 (as discussed with respect to block 520), the barrier status determinant module 152 may determine that an object 534 may be located within the movement path of the barrier 104. Therefore, the barrier control module 154 may inhibit sending the at least one barrier control signal to the barrier controller 108 to thereby inhibit the automatic closing of the garage door 532.
With reference again to FIG. 5A, if it is determined that at least one individual and/or at least one object is not located within the movement path of the barrier 104 (at block 522), the method 500 may proceed to block 528, wherein the method 500 includes determining if the vehicle 102 exits the barrier closing zone 306 b. In one embodiment, upon the vehicle 102 exiting the departure status zone 302 b, the vehicle 102 may continue to travel through the barrier closing zone 306 b as the vehicle 102 continues to depart away from the barrier 104. As the vehicle 102 is traveling through the barrier closing zone 306 b, the location determinant module 148 may access the barrier profile stored on the storage unit 116 and may communicate with the navigation system 132 to determine if the vehicle 102 is exiting (e.g., crossing) any of the portions of the boundary 306 a of the barrier closing zone 306 b. More specifically, the location determinant module 148 may continue to compare the locational coordinates of the vehicle 102 against the plurality of GPS coordinates associated with portions of the boundary 306 a to determine if they overlap with one another. If it is determined that the overlapping of the locational coordinates of the vehicle 102 occurs with the plurality of GPS coordinates associated with portions of the boundary 306 a, the barrier control module 154 determines that the vehicle 102 exits the barrier closing zone 306 b.
Upon determining that the vehicle 102 exists the barrier closing zone 306 b (at block 528), the method 500 may proceed to block 530, wherein the method 500 may include sending at least one barrier control signal to the barrier controller 108 to traverse the barrier 104 to the closed state. In an exemplary embodiment, the barrier control module 154 may utilize the current state of the barrier 104 as the opened state or the partially opened state to accordingly send the one or more barrier control signals to remotely control the movement of the barrier 104 to traverse the barrier 104 to the closed state. More specifically, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the opened state to the closed state. Likewise, the barrier control module 154 may utilize the vehicle communication system 128 to send the one or more barrier control signals to the transceiver 140 to traverse the barrier 104 from the partially opened state to the (fully) closed state. The barrier controller 108 may evaluate the received barrier control signals and may responsively traverse the barrier 104 from the opened state or partially opened state to the closed state.
In an additional embodiment, upon inhibiting the sending of the barrier control signal(s) to automatically open the barrier 104 (at block 524), the barrier control module 154 may communicate with the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved from the movement path of the barrier 104 before the vehicle 102 exits the barrier closing zone 306 b. The barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object continues to be located within the movement path of the barrier 104. If the barrier status determinant module 152 determines that the at least one individual and/or at least one object is no longer located within the movement path of the barrier 104, the barrier status determinant module 152 may communicate respective data to the barrier control module 154 and may consequently allow the sending of the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the closed state (at block 530).
In one or more embodiments, upon sending the barrier control signal(s) to the barrier controller 108 to traverse the barrier 104 to the closed state (at block 530), the barrier control module 154 may communicate respective data to the barrier status determinant module 152 to determine if the at least one individual and/or at least one object has moved/been moved within the movement path of the barrier 104 after the vehicle 102 has exited the barrier closing zone 306 b and the barrier control signal(s) has been sent to the barrier controller 108. The barrier status determinant module 152 may utilize the image sensors 134 and/or the RADAR/LADAR sensors 136 to continually provide sensor data to be analyzed by the module 152 to determine if the at least one individual and/or at least one object is (subsequently) located within the movement path of the barrier 104 after the barrier control signal(s) is sent.
In one configuration, if the barrier status determinant module 152 determines that the at least one individual and/or at least one object is located within the movement path of the barrier 104 after the sending of the barrier control signal(s), the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to cease movement of the barrier 104. In another configuration, if the barrier status determinant module 152 determines that the at least one individual and/or at least one object is located within the movement path of the barrier 104 after the sending of the barrier control signal(s), the barrier status determinant module 152 may communicate respective data to the barrier control module 154 to send a subsequent barrier control signal(s) to traverse the barrier 104 to the opened state.
FIG. 6 is an illustrative example of the barrier movement inhibition alert 602 presented on the display unit 114 of the vehicle 102 according to an exemplary embodiment. As discussed, the barrier movement inhibition alert 602 may be presented when the barrier control application 106 inhibits the sending of at least one barrier control signal to the barrier control to traverse the barrier 104 to the opened state or the closed state. As shown, the barrier movement inhibition alert 602 may include a manual barrier movement user input 604 that may be inputted by the user to manually override inhibiting of the sending of the at least one barrier control signal. In other words, upon the inhibiting of the automatic movement of the barrier 104 by the application 106, the user may input the manual barrier movement user input 604 to manually actuate the opening and/or closing of the barrier 104.
In one embodiment, the barrier movement inhibition alert 602 may additionally include the current status of the barrier 606 as determined based on the vehicle 102 entering the arrival status zone 202 b or the vehicle 102 exiting the departure status zone 302 b. Additionally, the barrier movement inhibition alert 602 may include the barrier traversing level 608 that indicates the opening/closing level of the barrier 104.
FIG. 7 is a process flow diagram of a method 700 for inhibiting automatic movement of the barrier 104 according to an exemplary embodiment. FIG. 7 will be described with reference to the components of FIG. 1 though it is to be appreciated that the method of FIG. 7 may be used with other systems and/or components. The method 700 may begin at block 702, wherein the method 700 may include determining a current state of the barrier 104 when a vehicle 102 travels through at least one first zone associated with a barrier 104. The method 700 may proceed to block 704, wherein the method 700 may include analyzing sensor data to determine if at least one: individual or object is located within a movement path of the barrier 104. As discussed above, at least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier.
The method 700 may proceed to block 706, wherein the method 700 may include inhibiting a sending of a barrier control signal that is automatically sent to move the barrier 104 once the vehicle 102 travels through at least one second zone upon determining that at least one: individual or object is located within the movement path of the barrier 104. The method 700 may proceed to block 708, wherein the method 700 may include presenting a user interface alert relating to inhibiting the automatic movement of the barrier 104. The user interface alert includes a manual barrier movement user input that may be inputted to send the at least one barrier control signal to move the barrier.
It should be apparent from the foregoing description that various exemplary embodiments of the invention may be implemented in hardware. Furthermore, various exemplary embodiments may be implemented as instructions stored on a non-transitory machine-readable storage medium, such as a volatile or non-volatile memory, which may be read and executed by at least one processor to perform the operations described in detail herein. A machine-readable storage medium may include any mechanism for storing information in a form readable by a machine, such as a personal or laptop computer, a server, or other computing device. Thus, a non-transitory machine-readable storage medium excludes transitory signals but may include both volatile and non-volatile memories, including but not limited to read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and similar storage media.
It should be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in machine readable media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.
It will be appreciated that various implementations of the above-disclosed and other features and functions, or alternatives or varieties thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims (20)

The invention claimed is:
1. A computer-implemented method for inhibiting automatic movement of a barrier, comprising: determining a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier; analyzing sensor data to determine if at least one individual or object is located within a movement path of the barrier, wherein at least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier; inhibiting a sending of the at least one barrier control signal from the vehicle to a barrier controller associated with the barrier that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that the at least one individual or object is located within the movement path of the barrier; and presenting a user interface alert relating to inhibiting the automatic movement of the barrier upon inhibiting the sending of the at least one barrier control signal from the vehicle.
2. The computer-implemented method of claim 1, wherein determining the current state of the barrier includes determining that the barrier is at least one of: an opened state, a partially opened state, and a closed state.
3. The computer-implemented method of claim 1, wherein analyzing sensor data includes receiving sensor data from at least one of: image sensors and RADAR/LADAR sensors when the vehicle reaches at least one sensing location that pertains to at least one of: the arrival of the vehicle towards the barrier and the departure of the vehicle away from the barrier.
4. The computer-implemented method of claim 3, wherein the at least one sensing location is determined based on a capability of at least one of: the image sensors to capture images of a full expanse of the movement path of barrier and the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier.
5. The computer-implemented method of claim 3, wherein image data is received from the image sensors and sensor wave data is received from the RADAR/LADAR sensors, wherein the image data and the sensor wave data is aggregated into a sensor data package, wherein the sensor data package is analyzed to determine if the at least one: individual or object is located within the movement path of the barrier.
6. The computer-implemented method of claim 5, wherein the at least one barrier control signal is sent to the barrier controller associated with the barrier to traverse the barrier to an opened state upon determining that the at least one: individual or object is not located within the movement path of the barrier when the vehicle is arriving towards the barrier and when the current state of the barrier is determined to be a closed state or a partially opened state.
7. The computer-implemented method of claim 6, wherein the at least one barrier control signal is sent to the barrier controller associated with the barrier to traverse the barrier to the closed state upon determining that the at least one: individual or object is not located within the movement path of the barrier when the vehicle is departing away from the barrier and the current state of the barrier is determined to be the opened state or the partially opened state.
8. The computer-implemented method of claim 6, wherein inhibiting the sending of the at least one barrier control signal includes communicating data that indicates the determination that the at least one: individual or object is located within the movement path of the barrier to a vehicle communication system to inhibit the sending of the at least one barrier control signal from the vehicle to the barrier controller associated with the barrier.
9. The computer-implemented method of claim 1, wherein presenting the user interface alert relating to inhibiting the automatic movement of the barrier includes presenting a manual barrier movement user input that may be inputted to send the at least one barrier control signal to move the barrier.
10. A system for inhibiting automatic movement of a barrier, comprising: a memory storing instructions when executed by a processor cause the processor to: determine a current state of the barrier when a vehicle travels through at least one first zone associated with the barrier; analyze sensor data to determine if at least one individual or object is located within a movement path of the barrier, wherein at least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier; inhibit a sending of the at least one barrier control signal from the vehicle to a barrier controller associated with the barrier that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that the at least one individual or object is located within the movement path of the barrier; and present a user interface alert relating to inhibiting the automatic movement of the barrier upon inhibiting the sending of the at least one barrier control signal from the vehicle.
11. The system of claim 10, wherein determining the current state of the barrier includes determining that the barrier is at least one of: an opened state, a partially opened state, and a closed state.
12. The system of claim 10, wherein analyzing sensor data includes receiving sensor data from at least one of: image sensors and RADAR/LADAR sensors when the vehicle reaches at least one sensing location that pertains to at least one of: the arrival of the vehicle towards the barrier and the departure of the vehicle away from the barrier.
13. The system of claim 12, wherein the at least one sensing location is determined based on a capability of at least one of: the image sensors to capture images of a full expanse of the movement path of barrier and the RADAR/LADAR sensors to sense obstacles that may be located within the full expanse of the movement path of the barrier.
14. The system of claim 12, wherein image data is received from the image sensors and sensor wave data is received from the RADAR/LADAR sensors, wherein the image data and the sensor wave data is aggregated into a sensor data package, wherein the sensor data package is analyzed to determine if the at least one: individual or object is located within the movement path of the barrier.
15. The system of claim 14, wherein the at least one barrier control signal is sent to the barrier controller associated with the barrier to traverse the barrier to an opened state upon determining that the at least one: individual or object is not located within the movement path of the barrier when the vehicle is arriving towards the barrier and when the current state of the barrier is determined to be a closed state or a partially opened state.
16. The system of claim 15, wherein the at least one barrier control signal is sent to the barrier controller associated with the barrier to traverse the barrier to the closed state upon determining that the at least one: individual or object is not located within the movement path of the barrier when the vehicle is departing away from the barrier and the current state of the barrier is determined to be the opened state or the partially opened state.
17. The system of claim 15, wherein inhibiting the sending of the at least one barrier control signal includes communicating data that indicates the determination that the at least one: individual or object is located within the movement path of the barrier to a vehicle communication system to inhibit the sending of the at least one barrier control signal from the vehicle to the barrier controller associated with the barrier.
18. The system of claim 10, wherein presenting the user interface alert relating to inhibiting the automatic movement of the barrier includes presenting a manual barrier movement user input that may be inputted to send the at least one barrier control signal to move the barrier.
19. A non-transitory computer readable storage medium storing instructions that when executed by a computer, which includes a processor, perform a method, the method comprising: determining a current state of a barrier when a vehicle travels through at least one first zone associated with the barrier; analyzing sensor data to determine if at least one individual or object is located within a movement path of the barrier, wherein at least one barrier control signal is sent to automatically control movement to open or close the barrier based on the current state of the barrier; inhibiting a sending of the at least one barrier control signal from the vehicle to a barrier controller associated with the barrier that is automatically sent to move the barrier once the vehicle travels through at least one second zone upon determining that the at least one individual or object is located within the movement path of the barrier; and presenting a user interface alert relating to inhibiting the automatic movement of the barrier upon inhibiting the sending of the at least one barrier control signal from the vehicle.
20. The non-transitory computer readable storage medium of claim 19, wherein inhibiting the sending of the at least one barrier control signal includes communicating data that indicates the determination that the at least one: individual or object is located within the movement path of the barrier to a vehicle communication system to inhibit the sending of the at least one barrier control signal from the vehicle to the barrier controller associated with the barrier.
US15/791,063 2017-08-08 2017-10-23 System and method for inhibiting automatic movement of a barrier Active US10358859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/791,063 US10358859B2 (en) 2017-08-08 2017-10-23 System and method for inhibiting automatic movement of a barrier
US15/884,730 US10557299B2 (en) 2017-08-08 2018-01-31 System and method for automatically controlling movement of a barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762542755P 2017-08-08 2017-08-08
US15/791,063 US10358859B2 (en) 2017-08-08 2017-10-23 System and method for inhibiting automatic movement of a barrier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/713,782 Continuation-In-Part US10246930B2 (en) 2017-08-08 2017-09-25 System and method for remotely controlling and determining a status of a barrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/810,609 Continuation-In-Part US10060175B1 (en) 2017-08-08 2017-11-13 System and method for handling a vector state change upon remotely controlling a barrier

Publications (2)

Publication Number Publication Date
US20190048639A1 US20190048639A1 (en) 2019-02-14
US10358859B2 true US10358859B2 (en) 2019-07-23

Family

ID=63208890

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/713,782 Active US10246930B2 (en) 2017-08-08 2017-09-25 System and method for remotely controlling and determining a status of a barrier
US15/791,063 Active US10358859B2 (en) 2017-08-08 2017-10-23 System and method for inhibiting automatic movement of a barrier
US15/810,609 Active US10060175B1 (en) 2017-08-08 2017-11-13 System and method for handling a vector state change upon remotely controlling a barrier
US15/861,027 Active US10851578B2 (en) 2017-08-08 2018-01-03 System and method for determining at least one zone associated with automatic control of a barrier
US15/878,893 Active 2038-02-06 US10494854B2 (en) 2017-08-08 2018-01-24 System and method for managing autonomous operation of a plurality of barriers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/713,782 Active US10246930B2 (en) 2017-08-08 2017-09-25 System and method for remotely controlling and determining a status of a barrier

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/810,609 Active US10060175B1 (en) 2017-08-08 2017-11-13 System and method for handling a vector state change upon remotely controlling a barrier
US15/861,027 Active US10851578B2 (en) 2017-08-08 2018-01-03 System and method for determining at least one zone associated with automatic control of a barrier
US15/878,893 Active 2038-02-06 US10494854B2 (en) 2017-08-08 2018-01-24 System and method for managing autonomous operation of a plurality of barriers

Country Status (1)

Country Link
US (5) US10246930B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200240198A1 (en) * 2019-01-24 2020-07-30 The Chamberlain Group, Inc. Movable Barrier Imminent Motion Notification System and Method
US20200242862A1 (en) * 2019-01-24 2020-07-30 The Chamberlain Group, Inc. Movable Barrier Imminent Motion Notification System and Method
US10907398B2 (en) 2018-02-12 2021-02-02 The Chamberlain Group, Inc. Movable barrier operator having updatable security protocol
US11220856B2 (en) 2019-04-03 2022-01-11 The Chamberlain Group Llc Movable barrier operator enhancement device and method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10643408B2 (en) * 2017-02-24 2020-05-05 Ecolink Intelligent Technology, Inc. Automatic garage door control
US10931910B2 (en) * 2017-11-07 2021-02-23 Nathaniel W. Bottomly Vehicle-carried information display systems and methods
US11014532B2 (en) * 2018-05-14 2021-05-25 Gentex Corporation Vehicle control module for smart home control system
US10970954B2 (en) * 2018-09-07 2021-04-06 The Chamberlain Group, Inc. Movable barrier operator registration verification
US11028633B2 (en) 2018-12-06 2021-06-08 The Chamberlain Group, Inc. Automatic control of a movable barrier
DE102018222341A1 (en) * 2018-12-19 2020-06-25 Psa Automobiles Sa Method for operating an operating device of a motor vehicle, computer program product, motor vehicle and system
JP7111030B2 (en) * 2019-03-04 2022-08-02 株式会社オートネットワーク技術研究所 In-vehicle update device, update processing program, and program update method
US11208188B2 (en) 2019-06-10 2021-12-28 Polaris Industries Inc. Thruster arrangement for a boat
JP7289741B2 (en) 2019-07-01 2023-06-12 文化シヤッター株式会社 Opening/closing control system, opening/closing control method, application for remote control device, and mobile communication terminal device
US11578527B2 (en) 2019-07-08 2023-02-14 The Chamberlain Group Llc In-vehicle device for controlling a movable barrier operator
WO2021062339A1 (en) 2019-09-27 2021-04-01 Polaris Industries Inc. System and method for positioning an aquatic vessel
CN111173402B (en) * 2020-01-20 2021-12-03 徐州启峰智能科技有限公司 Garage door opening device based on distance perception
CN111270946B (en) * 2020-01-20 2021-06-15 山东德能物联科技有限公司 Garage door opening device based on distance perception
AU2021204161A1 (en) 2020-06-23 2022-01-20 Tusimple, Inc. Systems and methods for deploying emergency roadside signaling devices
US12179889B2 (en) 2020-07-06 2024-12-31 Polaris Industries Inc. Boat maneuverability and stability control systems and methods
US11120655B1 (en) * 2020-07-06 2021-09-14 Ford Global Technologies, Llc Using a vehicle to identify a status of a garage door
US11381929B2 (en) * 2020-11-13 2022-07-05 Ford Global Technologies, Llc Adaptive geofencing reactive to vehicle dynamic observations
US12012094B2 (en) * 2020-12-07 2024-06-18 Ford Global Technologies, Llc Detecting vehicle presence at a site
US11960282B2 (en) * 2021-01-05 2024-04-16 Abb Schweiz Ag Systems and methods for servicing a data center using autonomous vehicle
JP2022118527A (en) * 2021-02-02 2022-08-15 本田技研工業株式会社 Information notification system, and information notification method
US20220403693A1 (en) * 2021-06-21 2022-12-22 The Chamberlain Group Llc System and Methods for Controlling a Movable Barrier Operator
KR20230011663A (en) * 2021-07-14 2023-01-25 현대자동차주식회사 APPARATUS AND METHOD FOR PROVIDING IoT SERVICE BASED ON VEHICLE LOCATION
KR20230052719A (en) * 2021-10-13 2023-04-20 현대자동차주식회사 Autonomous Vehicle, system for remotely controlling the same, and method thereof
US20240329823A1 (en) * 2023-03-28 2024-10-03 App-Pop-Up Inc. Asystem and method for modulating a graphical user interface (gui) based on real time status criteria
CN117971353B (en) * 2024-03-29 2024-06-11 成都赛力斯科技有限公司 Vehicle-mounted application layer signal processing method, electronic equipment and storage medium

Citations (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350986A (en) * 1993-05-20 1994-09-27 General Motors Corp. Vehicle power door speed control
US5625980A (en) 1993-09-15 1997-05-06 Rmt Associates Garage door opener with remote safety sensors
US5793300A (en) 1993-03-15 1998-08-11 Prince Corporation Trainable RF receiver for remotely controlling household appliances
US5900806A (en) 1992-05-22 1999-05-04 Issa; Darrell E. Alarm sensor multiplexing
US6091217A (en) 1998-01-29 2000-07-18 Elite Access Systems, Inc. Safety gate operator which prevents entrapment, and method of its operation
US6091330A (en) 1998-06-12 2000-07-18 Lear Automotive Dearborn, Inc. Integrated vehicle remote engine ignition system
US6271765B1 (en) 1998-06-02 2001-08-07 Lear Automotive Dearborn, Inc. Passive garage door opener
US20020002443A1 (en) 1998-10-10 2002-01-03 Ronald M. Ames Multi-level architecture for monitoring and controlling a functional system
US6400956B1 (en) 1999-11-15 2002-06-04 Lucent Technologies Inc. Method and apparatus for a wireless telecommunication system that provides location-based action services
US6469464B1 (en) * 2000-08-31 2002-10-22 Mccall Steve Automatic safety garage door closer
US6476732B1 (en) 2000-05-10 2002-11-05 Ford Global Technologies, Inc. Passive automatic door opener
US20020170685A1 (en) 2000-08-24 2002-11-21 Weik Martin Herman Parking barrier with accident event logging and self-diagnostic control system
US6526335B1 (en) 2000-01-24 2003-02-25 G. Victor Treyz Automobile personal computer systems
US6563278B2 (en) 1999-07-22 2003-05-13 Noostuff, Inc. Automated garage door closer
US20030102836A1 (en) 2000-08-31 2003-06-05 Mccall Steve Safety garage door retrofit system
US6615132B1 (en) 1999-03-08 2003-09-02 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Navigation device
US20030174045A1 (en) 2002-03-14 2003-09-18 Shiyu Zhang Automatic garage door controlling apparatus and methods
US20030197594A1 (en) 2002-04-22 2003-10-23 Johnson Controls Technology Company System and method for wireless control of home electronic systems based on location
US20030197595A1 (en) 2002-04-22 2003-10-23 Johnson Controls Technology Company System and method for wireless control of multiple remote electronic systems
US20030216139A1 (en) 2002-05-16 2003-11-20 Johnson Controls Technology Company System and method for wireless control of remote electronic systems based on timing information
US6911898B2 (en) 2001-08-31 2005-06-28 Hyundai Motor Company System for automatically opening and closing a garage door and a method thereof
US20050140321A1 (en) 2003-12-30 2005-06-30 The Chamberlain Group, Inc. System and method of actuating a movable barrier operator
US20050206497A1 (en) * 2004-03-18 2005-09-22 Tsui Gallen K L Systems and methods for proximity control of a barrier
US20050212681A1 (en) 2004-03-23 2005-09-29 Northcoast Innovations Garage carbon monoxide detector with automatic garage door opening command
US6975203B2 (en) 2002-06-06 2005-12-13 The Chamberlain Group, Inc. Universal barrier operator transmitter
US20060071155A1 (en) * 2004-01-08 2006-04-06 Equus Inc. Safety device for garage door
US20060077035A1 (en) * 2004-10-08 2006-04-13 Wayne-Dalton Corp. System for automatically moving access barriers and methods for adjusting system sensitivity
US7039391B2 (en) 2000-11-28 2006-05-02 Xanboo, Inc. Method and system for communicating with a wireless device
US7046119B2 (en) 2004-05-19 2006-05-16 Lear Corporation Vehicle independent passive entry system
US7068163B2 (en) 2001-07-17 2006-06-27 Sari Philip D Method and apparatus for identifying waypoints using a handheld locator device
US7071813B2 (en) 2003-05-29 2006-07-04 The Chamberlain Group, Inc. Status signal method and apparatus for movable barrier operator and corresponding wireless remote control
US20060158344A1 (en) 2002-10-18 2006-07-20 Johnson Controls Technology Company System and method for receiving a wireless status signal in a vehicle from a remote electronic system
US20060220834A1 (en) 2005-04-01 2006-10-05 Joon Maeng Wireless event status communication system, device and method
US7127847B2 (en) 2002-02-19 2006-10-31 The Chamberlain Group, Inc. Barrier movement control safety method and apparatus
US7170426B2 (en) 2004-03-18 2007-01-30 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US7170248B2 (en) 2004-01-21 2007-01-30 Gallen Ka Leung Tsui Systems and methods for operating a barrier
US20070046232A1 (en) * 2005-08-24 2007-03-01 Mullet Willis J System and methods for automatically moving access barriers initiated by mobile transmitter devices
US7205908B2 (en) 2004-03-18 2007-04-17 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US20070085067A1 (en) 2005-10-18 2007-04-19 Lewis John R Gated parking corral
US20070188120A1 (en) * 2004-02-06 2007-08-16 Mullet Willis J Operating system utilizing a selectively concealed multi-function wall station transmitter with an auto-close function for a motorized barrier operator
US7327107B2 (en) 2005-08-24 2008-02-05 Wayne-Dalton Corp. System and methods for automatically moving access barriers initiated by mobile transmitter devices
US7332999B2 (en) 2004-04-19 2008-02-19 The Chamberlain Group, Inc. System and method for operating multiple moveable barrier operators
US20080061926A1 (en) 2006-07-31 2008-03-13 The Chamberlain Group, Inc. Method and apparatus for utilizing a transmitter having a range limitation to control a movable barrier operator
US7358480B2 (en) 2006-02-21 2008-04-15 Wayne-Dalton Corp. System and method for re-synchronizing an access barrier with a barrier operator
US20080224819A1 (en) 2007-03-16 2008-09-18 The Chamberlain Group, Inc. Multiple barrier operator system
US7545833B2 (en) 1999-11-17 2009-06-09 Ms Sedco RF door activation system
US20090189779A1 (en) 2008-01-25 2009-07-30 Denso International America, Inc. Automatic garage door closing through the vehicle control
US7602283B2 (en) 2005-02-01 2009-10-13 American Business Solutions, Llc Active monitoring system for use with a garage door opener
US7609146B2 (en) 2005-07-27 2009-10-27 Lear Corporation System and method for controlling a function using a variable sensitivity receiver
US20090269635A1 (en) 2008-04-25 2009-10-29 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system
US20100085145A1 (en) * 2008-10-07 2010-04-08 The Chamberlain Group, Inc. System and Method for Control of Multiple Barrier Operators
US7710284B2 (en) 2005-03-23 2010-05-04 Dzurko Thomas A Automatic garage door response system for carbon monoxide or carbon monoxide and smoke detection
US20100127882A1 (en) 2008-11-25 2010-05-27 Toyota Motor Engineering & Manufacturing North America, Inc. Garage Door Closing Confirmation Systems and Methods
US7733218B2 (en) 2006-03-31 2010-06-08 Symbol Technologies, Inc. RFID tag receive signal strength indicator
US20100265034A1 (en) 2007-04-05 2010-10-21 George Jaroslav Cap Portal access control system
US7881733B2 (en) 2004-11-05 2011-02-01 Wirelesswerx International, Inc. Method and system to monitor and control devices utilizing wireless media
US20110032115A1 (en) 2009-08-04 2011-02-10 Robert Kwiecinski Vehicle Having Remote Start and Enclosed Space Detection
US20110032073A1 (en) * 2005-08-24 2011-02-10 Homerun Holdings, Corp. System and Methods for Automatically Moving Access Barriers Initiated by Mobile Transmitter Devices
US7911358B2 (en) 2002-10-08 2011-03-22 Johnson Controls Technology Company System and method for enrollment of a remotely controlled device in a trainable transmitter
US7973678B2 (en) 2009-02-02 2011-07-05 Robert Bosch Gmbh Control of building systems based on the location and movement of a vehicle tracking device
US20110193700A1 (en) 2010-02-10 2011-08-11 Fitzgibbon James J Apparatus And Method For Operating Devices Based Upon Vehicle Detection
US8068006B2 (en) 2004-12-23 2011-11-29 Celec Conception Electronique Method of detecting presence and motion for door control devices and door control devices implementing such a demand
US8111997B2 (en) 2008-06-30 2012-02-07 The Chamberlain Group, Inc. Multiple movable barrier operator system and method
US8115616B2 (en) 2009-04-24 2012-02-14 GM Global Technology Operations LLC Garage door alert employing a global positioning system
US8179229B2 (en) 2005-08-24 2012-05-15 Homerun Holdings Corporation System and methods for automatically moving access barriers initiated by mobile transmitter devices
US8244448B2 (en) 2009-08-04 2012-08-14 Ford Global Technologies, Llc Vehicle having remote start and garage door control
US20120255231A1 (en) * 2011-04-06 2012-10-11 The Chamberlain Group, Inc. Barrier Operator with Power Management Features
US20120265874A1 (en) 2010-11-29 2012-10-18 Nokia Corporation Method and apparatus for sharing and managing resource availability
US8291642B2 (en) 2008-06-30 2012-10-23 The Chamberlain Group, Inc. Movable barrier operator synchronization system and method
US8299893B2 (en) 2008-03-18 2012-10-30 Homerun Holdings Corporation Operator system utilizing a position detector to initiate a closing sequence
US8330572B2 (en) 2007-03-16 2012-12-11 Homerun Holdings Corporation Multiple barrier control system
US20130033359A1 (en) 2011-08-03 2013-02-07 Wen Shu Ji No-Click automate opener control system for gate, garage and the like
US20130042530A1 (en) * 2010-01-22 2013-02-21 Smart Openers Pty Ltd Beam Protection System for a Door Operator
US20130086841A1 (en) * 2011-10-10 2013-04-11 William M. Luper Overhead Door Object Detection Apparatus
US20130117078A1 (en) 2000-08-24 2013-05-09 Martin Herman Weik, III Virtual attendant system and parking management system
US20130147600A1 (en) 2011-12-09 2013-06-13 The Chamberlain Group, Inc. Access Authorization via Location-Aware Authorization Device
US20130147616A1 (en) * 2011-12-13 2013-06-13 General Motors Llc Entryway control and monitoring system
US8531266B2 (en) 2002-10-18 2013-09-10 Johnson Controls Technology Company System and method for providing an in-vehicle transmitter having multi-colored LED
US8577392B1 (en) 2012-06-13 2013-11-05 Apple Inc. System and method of determining location of wireless communication devices/persons for controlling/adjusting operation of devices based on the location
US8643467B2 (en) 2009-01-02 2014-02-04 Johnson Controls Technology Company System and method for causing garage door opener to open garage door using sensor input
US8710978B2 (en) 2009-06-04 2014-04-29 Continental Teves Ag & Co. Ohg Method and apparatus for communication
US20140118111A1 (en) * 2012-10-30 2014-05-01 Continental Automotive Systems, Inc. Determining the state of a garage door using vehicle sensors
US20140125499A1 (en) * 2012-11-08 2014-05-08 The Chamberlain Group, Inc. Barrier Operator Feature Enhancement
US20140167961A1 (en) 2012-12-14 2014-06-19 Qualcomm Incorporated Providing alerts, vouchers, or coupons once a plurality of geo-fences have been breached a number of times
US20140266593A1 (en) 2013-03-15 2014-09-18 Vivint, Inc. Garage door status and control via a security system
US20140305599A1 (en) * 2011-10-31 2014-10-16 Automatic Technology (Australia) Pty Ltd Safety system for moveable closures
US20140320263A1 (en) * 2013-04-26 2014-10-30 GM Global Technology Operations LLC Methods, program products, and systems relating to vehicular garage door control systems
US8878646B2 (en) 2008-10-13 2014-11-04 Gentex Corporation Communication system and method
US20150002262A1 (en) 2013-06-28 2015-01-01 Johnson Controls Technology Company Battery powered rear view mirror display and integrated trainable transceiver unit
US20150084750A1 (en) 2013-09-25 2015-03-26 The Chamberlain Group, Inc. Appliance Control Using Destination Information
US20150084779A1 (en) * 2012-10-30 2015-03-26 Continental Automotive Systems, Inc. Garage door open alert
US8994496B2 (en) 2011-04-01 2015-03-31 The Chamberlain Group, Inc. Encrypted communications for a moveable barrier environment
US20150137941A1 (en) 2013-11-15 2015-05-21 Gentex Corporation Internet-connected garage door control system
US20150148983A1 (en) 2013-11-22 2015-05-28 The Chamberlain Group, Inc. Remotely Operating a Movable Barrier Operator with Auxiliary Device
US20150235495A1 (en) 2014-02-18 2015-08-20 David R. Hall System and Method for Partially Opening an Access Barrier
US9129502B2 (en) 2010-07-12 2015-09-08 Dsp Group Ltd. Remote unit link quality monitoring
US20150266356A1 (en) 2014-03-19 2015-09-24 Ford Global Technologies, Llc Method and system to enable commands on a vehicle computer based on user created rules
US20150302736A1 (en) 2014-04-18 2015-10-22 Gentex Corporation Trainable transceiver and camera systems and methods
US20150302672A1 (en) 2013-12-18 2015-10-22 Yadvender Singh Kalsi Process, system, method and apparatus for monitoring status and control of equipment
US20150348344A1 (en) 2014-06-02 2015-12-03 Schlage Lock Company Llc System and method for signifying intent for lock operation
US20160018798A1 (en) 2014-07-17 2016-01-21 Toyota Motor Engineering & Manufacturing North America, Inc. Home control system from a vehicle
US9264673B2 (en) 2011-11-20 2016-02-16 Magna Electronics, Inc. Vehicle vision system with enhanced functionality
US20160055742A1 (en) 2014-08-19 2016-02-25 Ruizu (Ray) Wang Switch Control System and Method Thereof
US20160053699A1 (en) * 2014-08-22 2016-02-25 At&T Intellectual Property I, L.P. Methods, Systems, and Products for Detection of Environmental Conditions
US20160104364A1 (en) * 2014-10-08 2016-04-14 Andrew Brooks Methods and apparatus for monitoring a dock leveler
US9326100B2 (en) 2013-07-01 2016-04-26 Continental Automotive Systems, Inc. Simple and reliable home location identification method and apparatus
US20160130853A1 (en) 2014-11-11 2016-05-12 Viking Access Systems, Llc Movable barrier operator with touchscreen interface
US20160148451A1 (en) 2014-11-26 2016-05-26 Menklab, LLC Control system for providing cloud based commands for controlling operation of a moveable barrier
US9412264B2 (en) 2011-01-28 2016-08-09 Gentex Corporation Wireless trainable transceiver device with integrated interface and GPS modules
US20160300415A1 (en) 2015-04-09 2016-10-13 Overhead Door Corporation Automatic transmission of a barrier status and change of status over a network
US20160312517A1 (en) 2015-04-22 2016-10-27 Ford Global Technologies, Llc Vehicle and method of opening and closing a door of the vehicle
US20160314362A1 (en) 2015-04-22 2016-10-27 Ford Global Technologies, Llc Depth mapping camera for door inside
US20160321914A1 (en) 2015-04-29 2016-11-03 Gentex Corporation Trainable transceiver with hands free image based operation
US20160343233A1 (en) 2015-05-19 2016-11-24 GM Global Technology Operations LLC Providing a building door reminder in a vehicle
US9507335B2 (en) 2012-05-31 2016-11-29 Overhead Door Corporation Remote barrier operator command and status device and operation
US20160375898A1 (en) 2015-06-24 2016-12-29 Volkswagen Ag Communication device, control device, and system for vehicle
US9539930B2 (en) 2011-09-23 2017-01-10 Gentex Corporation Systems and methods for rear view mirror displays
US9551781B2 (en) 2014-10-30 2017-01-24 Bastille Networks, Inc. Efficient localization of transmitters within complex electromagnetic environments
US9555814B2 (en) 2014-09-29 2017-01-31 Ford Global Technologies, Llc Unexpected thermal event assist
US20170030737A1 (en) 2015-07-29 2017-02-02 Ford Global Technologies, Llc Door position sensor and system for a vehicle
US20170034485A1 (en) 2015-03-07 2017-02-02 SkyBell Technologies, Inc. Garage door communication systems and methods
US9581456B2 (en) 2015-01-23 2017-02-28 Toyota Jidosha Kabushiki Kaisha Determining an estimated time of arrival of a vehicle at an endpoint of a journey
US9620005B2 (en) 2014-04-18 2017-04-11 Gentex Corporation Trainable transceiver and mobile communications device systems and methods
US20170108873A1 (en) * 2015-10-15 2017-04-20 Fujitsu Ten Limited Driving assistance apparatus, vehicle, and garage cooperation control system
US20170140646A1 (en) 2015-11-16 2017-05-18 Jiang Lu In-vehicle garage door monitor
US20170138111A1 (en) 2014-08-06 2017-05-18 Ben Lietz Methods and Systems to Indicate the Status of Door Operations
US9656691B2 (en) 2012-11-14 2017-05-23 Valeo Schalter Und Sensoren Gmbh Method for performing an at least semi-autonomous parking process of a motor vehicle in a garage, parking assistance system and motor vehicle
US20170147887A1 (en) 2015-11-23 2017-05-25 Ford Global Technologies, Llc Method and apparatus for interior/exterior vehicular environment alerts
US20170154482A1 (en) * 2015-11-27 2017-06-01 Ford Global Technologies, Llc Vehicle liftgate and garage door synchronization
US20170175433A1 (en) * 2015-12-16 2017-06-22 Pinning Inc. Garage door monitoring system
US9879466B1 (en) 2017-04-18 2018-01-30 Chengfu Yu Garage door controller and monitoring system and method
US20180030764A1 (en) * 2016-07-27 2018-02-01 Ford Global Technologies, Llc Motor vehicle and a door hinge mechanism therefor
US20180194344A1 (en) * 2016-07-29 2018-07-12 Faraday&Future Inc. System and method for autonomous vehicle navigation
US20180216389A1 (en) * 2015-07-15 2018-08-02 Philip Y. W. Tsui Wireless infrared safety sensor for garage door opener system
US20180247475A1 (en) * 2017-02-24 2018-08-30 Ecolink Intelligent Technology, Inc. Automatic garage door control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM261716U (en) * 2004-07-09 2005-04-11 Entire Technology Co Ltd Highly uniformly light-emitting bottom lighting back light module structure
JP2007158447A (en) * 2005-11-30 2007-06-21 Canon Inc Radio communication device
US7956721B2 (en) * 2007-01-09 2011-06-07 Homerun Holdings Corporation Power conserving mobile transmitter
DE102012012297A1 (en) * 2012-03-30 2013-10-02 Atlas Copco Construction Tools Gmbh Valve
US9788156B1 (en) * 2016-03-30 2017-10-10 International Business Machines Corporation Geofence determination
US10772147B2 (en) * 2016-12-22 2020-09-08 Intel Corporation Methods and apparatus for connection attempt failure avoidance with a wireless network
US10490007B2 (en) * 2017-08-08 2019-11-26 Honda Motor Co., Ltd. System and method for automatically controlling movement of a barrier
US10557299B2 (en) * 2017-08-08 2020-02-11 Honda Motor Co., Ltd. System and method for automatically controlling movement of a barrier

Patent Citations (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900806A (en) 1992-05-22 1999-05-04 Issa; Darrell E. Alarm sensor multiplexing
US5793300A (en) 1993-03-15 1998-08-11 Prince Corporation Trainable RF receiver for remotely controlling household appliances
US5350986A (en) * 1993-05-20 1994-09-27 General Motors Corp. Vehicle power door speed control
US5625980A (en) 1993-09-15 1997-05-06 Rmt Associates Garage door opener with remote safety sensors
US6091217A (en) 1998-01-29 2000-07-18 Elite Access Systems, Inc. Safety gate operator which prevents entrapment, and method of its operation
US6271765B1 (en) 1998-06-02 2001-08-07 Lear Automotive Dearborn, Inc. Passive garage door opener
US6091330A (en) 1998-06-12 2000-07-18 Lear Automotive Dearborn, Inc. Integrated vehicle remote engine ignition system
US20020002443A1 (en) 1998-10-10 2002-01-03 Ronald M. Ames Multi-level architecture for monitoring and controlling a functional system
US6615132B1 (en) 1999-03-08 2003-09-02 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Navigation device
US7342368B2 (en) 1999-07-22 2008-03-11 Roman Ronald J Automated garage door closer
US6563278B2 (en) 1999-07-22 2003-05-13 Noostuff, Inc. Automated garage door closer
US6400956B1 (en) 1999-11-15 2002-06-04 Lucent Technologies Inc. Method and apparatus for a wireless telecommunication system that provides location-based action services
US7545833B2 (en) 1999-11-17 2009-06-09 Ms Sedco RF door activation system
US6526335B1 (en) 2000-01-24 2003-02-25 G. Victor Treyz Automobile personal computer systems
US6711474B1 (en) 2000-01-24 2004-03-23 G. Victor Treyz Automobile personal computer systems
US6476732B1 (en) 2000-05-10 2002-11-05 Ford Global Technologies, Inc. Passive automatic door opener
US20130117078A1 (en) 2000-08-24 2013-05-09 Martin Herman Weik, III Virtual attendant system and parking management system
US20060157206A1 (en) 2000-08-24 2006-07-20 Weik Martin H Iii Parking barrier with accident event logging and self-diagnostic control system
US20020170685A1 (en) 2000-08-24 2002-11-21 Weik Martin Herman Parking barrier with accident event logging and self-diagnostic control system
US6469464B1 (en) * 2000-08-31 2002-10-22 Mccall Steve Automatic safety garage door closer
US20030102836A1 (en) 2000-08-31 2003-06-05 Mccall Steve Safety garage door retrofit system
US7039391B2 (en) 2000-11-28 2006-05-02 Xanboo, Inc. Method and system for communicating with a wireless device
US7068163B2 (en) 2001-07-17 2006-06-27 Sari Philip D Method and apparatus for identifying waypoints using a handheld locator device
US6911898B2 (en) 2001-08-31 2005-06-28 Hyundai Motor Company System for automatically opening and closing a garage door and a method thereof
US7127847B2 (en) 2002-02-19 2006-10-31 The Chamberlain Group, Inc. Barrier movement control safety method and apparatus
US20030174045A1 (en) 2002-03-14 2003-09-18 Shiyu Zhang Automatic garage door controlling apparatus and methods
US8049595B2 (en) 2002-04-22 2011-11-01 Johnson Controls Technology Company System and method for wireless control of multiple remote electronic systems
US20030197595A1 (en) 2002-04-22 2003-10-23 Johnson Controls Technology Company System and method for wireless control of multiple remote electronic systems
US20030197594A1 (en) 2002-04-22 2003-10-23 Johnson Controls Technology Company System and method for wireless control of home electronic systems based on location
US20030216139A1 (en) 2002-05-16 2003-11-20 Johnson Controls Technology Company System and method for wireless control of remote electronic systems based on timing information
US6975203B2 (en) 2002-06-06 2005-12-13 The Chamberlain Group, Inc. Universal barrier operator transmitter
US9007168B2 (en) 2002-10-08 2015-04-14 Gentex Corporation System and method for enrollment of a remotely controlled device in a trainable transmitter
US7911358B2 (en) 2002-10-08 2011-03-22 Johnson Controls Technology Company System and method for enrollment of a remotely controlled device in a trainable transmitter
US8531266B2 (en) 2002-10-18 2013-09-10 Johnson Controls Technology Company System and method for providing an in-vehicle transmitter having multi-colored LED
US20060158344A1 (en) 2002-10-18 2006-07-20 Johnson Controls Technology Company System and method for receiving a wireless status signal in a vehicle from a remote electronic system
US9430939B2 (en) 2002-10-18 2016-08-30 Gentex Corporation System and method for providing an in-vehicle transmitter having multi-colored LED
US7071813B2 (en) 2003-05-29 2006-07-04 The Chamberlain Group, Inc. Status signal method and apparatus for movable barrier operator and corresponding wireless remote control
US20050140321A1 (en) 2003-12-30 2005-06-30 The Chamberlain Group, Inc. System and method of actuating a movable barrier operator
US20060071155A1 (en) * 2004-01-08 2006-04-06 Equus Inc. Safety device for garage door
US7170248B2 (en) 2004-01-21 2007-01-30 Gallen Ka Leung Tsui Systems and methods for operating a barrier
US20070188120A1 (en) * 2004-02-06 2007-08-16 Mullet Willis J Operating system utilizing a selectively concealed multi-function wall station transmitter with an auto-close function for a motorized barrier operator
US7088265B2 (en) 2004-03-18 2006-08-08 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US20050206497A1 (en) * 2004-03-18 2005-09-22 Tsui Gallen K L Systems and methods for proximity control of a barrier
US7205908B2 (en) 2004-03-18 2007-04-17 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US7170426B2 (en) 2004-03-18 2007-01-30 Gallen Ka Leung Tsui Systems and methods for proximity control of a barrier
US7183933B2 (en) 2004-03-23 2007-02-27 Northcoast Innovations Garage carbon monoxide detector with automatic garage door opening command
US20050212681A1 (en) 2004-03-23 2005-09-29 Northcoast Innovations Garage carbon monoxide detector with automatic garage door opening command
US7332999B2 (en) 2004-04-19 2008-02-19 The Chamberlain Group, Inc. System and method for operating multiple moveable barrier operators
US7046119B2 (en) 2004-05-19 2006-05-16 Lear Corporation Vehicle independent passive entry system
US20060077035A1 (en) * 2004-10-08 2006-04-13 Wayne-Dalton Corp. System for automatically moving access barriers and methods for adjusting system sensitivity
US7310043B2 (en) 2004-10-08 2007-12-18 Wayne-Dalton Corp. System for automatically moving access barriers and methods for adjusting system sensitivity
US7881733B2 (en) 2004-11-05 2011-02-01 Wirelesswerx International, Inc. Method and system to monitor and control devices utilizing wireless media
US8068006B2 (en) 2004-12-23 2011-11-29 Celec Conception Electronique Method of detecting presence and motion for door control devices and door control devices implementing such a demand
US7602283B2 (en) 2005-02-01 2009-10-13 American Business Solutions, Llc Active monitoring system for use with a garage door opener
US7710284B2 (en) 2005-03-23 2010-05-04 Dzurko Thomas A Automatic garage door response system for carbon monoxide or carbon monoxide and smoke detection
US20060220834A1 (en) 2005-04-01 2006-10-05 Joon Maeng Wireless event status communication system, device and method
US7498936B2 (en) 2005-04-01 2009-03-03 Strauss Acquisitions, L.L.C. Wireless event status communication system, device and method
US8653962B2 (en) 2005-04-01 2014-02-18 Strauss Acquisitions, L.L.C. Wireless event status communication system, device and method
US7609146B2 (en) 2005-07-27 2009-10-27 Lear Corporation System and method for controlling a function using a variable sensitivity receiver
US7327108B2 (en) 2005-08-24 2008-02-05 Wayne-Dalton Corp. System and methods for automatically moving access barriers initiated by mobile transmitter devices
US8179229B2 (en) 2005-08-24 2012-05-15 Homerun Holdings Corporation System and methods for automatically moving access barriers initiated by mobile transmitter devices
US7327107B2 (en) 2005-08-24 2008-02-05 Wayne-Dalton Corp. System and methods for automatically moving access barriers initiated by mobile transmitter devices
US20070046232A1 (en) * 2005-08-24 2007-03-01 Mullet Willis J System and methods for automatically moving access barriers initiated by mobile transmitter devices
US8058970B2 (en) 2005-08-24 2011-11-15 Homerun Holdings Corporation System and methods for automatically moving access barriers initiated by mobile transmitter devices
US7635960B2 (en) 2005-08-24 2009-12-22 Wayne-Dalton Corp. System and methods for automatically moving access barriers initiated by mobile transmitter devices
US8400264B2 (en) 2005-08-24 2013-03-19 Homerun Holdings Corporation System and methods for automatically moving access barriers initiated by mobile transmitter devices
US20110032073A1 (en) * 2005-08-24 2011-02-10 Homerun Holdings, Corp. System and Methods for Automatically Moving Access Barriers Initiated by Mobile Transmitter Devices
US20070085067A1 (en) 2005-10-18 2007-04-19 Lewis John R Gated parking corral
US7358480B2 (en) 2006-02-21 2008-04-15 Wayne-Dalton Corp. System and method for re-synchronizing an access barrier with a barrier operator
US7733218B2 (en) 2006-03-31 2010-06-08 Symbol Technologies, Inc. RFID tag receive signal strength indicator
US20080061926A1 (en) 2006-07-31 2008-03-13 The Chamberlain Group, Inc. Method and apparatus for utilizing a transmitter having a range limitation to control a movable barrier operator
US8330572B2 (en) 2007-03-16 2012-12-11 Homerun Holdings Corporation Multiple barrier control system
US20080224819A1 (en) 2007-03-16 2008-09-18 The Chamberlain Group, Inc. Multiple barrier operator system
US20100265034A1 (en) 2007-04-05 2010-10-21 George Jaroslav Cap Portal access control system
US20090189779A1 (en) 2008-01-25 2009-07-30 Denso International America, Inc. Automatic garage door closing through the vehicle control
US8299893B2 (en) 2008-03-18 2012-10-30 Homerun Holdings Corporation Operator system utilizing a position detector to initiate a closing sequence
US20090269635A1 (en) 2008-04-25 2009-10-29 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system
US8111997B2 (en) 2008-06-30 2012-02-07 The Chamberlain Group, Inc. Multiple movable barrier operator system and method
US8291642B2 (en) 2008-06-30 2012-10-23 The Chamberlain Group, Inc. Movable barrier operator synchronization system and method
US8279040B2 (en) * 2008-10-07 2012-10-02 The Chamberlain Group, Inc. System and method for control of multiple barrier operators
US20100085145A1 (en) * 2008-10-07 2010-04-08 The Chamberlain Group, Inc. System and Method for Control of Multiple Barrier Operators
US8878646B2 (en) 2008-10-13 2014-11-04 Gentex Corporation Communication system and method
US9600950B2 (en) 2008-10-13 2017-03-21 Gentex Corporation Communication system and method
US9189952B2 (en) 2008-10-13 2015-11-17 Gentex Corporation Communication system and method
US20100127882A1 (en) 2008-11-25 2010-05-27 Toyota Motor Engineering & Manufacturing North America, Inc. Garage Door Closing Confirmation Systems and Methods
US20160117879A1 (en) 2009-01-02 2016-04-28 Gentex Corporation System for causing garage door opener to open garage door and method
US9230378B2 (en) 2009-01-02 2016-01-05 Gentex Corporation System and method for causing garage door opener to open garage door using an environmental sensor
US8643467B2 (en) 2009-01-02 2014-02-04 Johnson Controls Technology Company System and method for causing garage door opener to open garage door using sensor input
US7973678B2 (en) 2009-02-02 2011-07-05 Robert Bosch Gmbh Control of building systems based on the location and movement of a vehicle tracking device
US8115616B2 (en) 2009-04-24 2012-02-14 GM Global Technology Operations LLC Garage door alert employing a global positioning system
US8710978B2 (en) 2009-06-04 2014-04-29 Continental Teves Ag & Co. Ohg Method and apparatus for communication
US8244448B2 (en) 2009-08-04 2012-08-14 Ford Global Technologies, Llc Vehicle having remote start and garage door control
US20110032115A1 (en) 2009-08-04 2011-02-10 Robert Kwiecinski Vehicle Having Remote Start and Enclosed Space Detection
US20130042530A1 (en) * 2010-01-22 2013-02-21 Smart Openers Pty Ltd Beam Protection System for a Door Operator
US20110193700A1 (en) 2010-02-10 2011-08-11 Fitzgibbon James J Apparatus And Method For Operating Devices Based Upon Vehicle Detection
US8648695B2 (en) * 2010-02-10 2014-02-11 The Chamberlain Group, Inc. Apparatus and method for operating devices based upon vehicle detection for use with a movable barrier
US9129502B2 (en) 2010-07-12 2015-09-08 Dsp Group Ltd. Remote unit link quality monitoring
US20120265874A1 (en) 2010-11-29 2012-10-18 Nokia Corporation Method and apparatus for sharing and managing resource availability
US9542834B2 (en) 2011-01-28 2017-01-10 Gentex Corporation Wireless trainable transceiver device with integrated interface and GPS modules
US9412264B2 (en) 2011-01-28 2016-08-09 Gentex Corporation Wireless trainable transceiver device with integrated interface and GPS modules
US8994496B2 (en) 2011-04-01 2015-03-31 The Chamberlain Group, Inc. Encrypted communications for a moveable barrier environment
US20120255231A1 (en) * 2011-04-06 2012-10-11 The Chamberlain Group, Inc. Barrier Operator with Power Management Features
US20130033359A1 (en) 2011-08-03 2013-02-07 Wen Shu Ji No-Click automate opener control system for gate, garage and the like
US9539930B2 (en) 2011-09-23 2017-01-10 Gentex Corporation Systems and methods for rear view mirror displays
US20130086841A1 (en) * 2011-10-10 2013-04-11 William M. Luper Overhead Door Object Detection Apparatus
US20140305599A1 (en) * 2011-10-31 2014-10-16 Automatic Technology (Australia) Pty Ltd Safety system for moveable closures
US9264673B2 (en) 2011-11-20 2016-02-16 Magna Electronics, Inc. Vehicle vision system with enhanced functionality
US9509962B2 (en) 2011-11-20 2016-11-29 Magna Electronics Inc. Vehicle vision system with enhanced functionality
US20130147600A1 (en) 2011-12-09 2013-06-13 The Chamberlain Group, Inc. Access Authorization via Location-Aware Authorization Device
US20130147616A1 (en) * 2011-12-13 2013-06-13 General Motors Llc Entryway control and monitoring system
US8922356B2 (en) 2011-12-13 2014-12-30 General Motors Llc Entryway control and monitoring system
US9507335B2 (en) 2012-05-31 2016-11-29 Overhead Door Corporation Remote barrier operator command and status device and operation
US8577392B1 (en) 2012-06-13 2013-11-05 Apple Inc. System and method of determining location of wireless communication devices/persons for controlling/adjusting operation of devices based on the location
US20150084779A1 (en) * 2012-10-30 2015-03-26 Continental Automotive Systems, Inc. Garage door open alert
US20140118111A1 (en) * 2012-10-30 2014-05-01 Continental Automotive Systems, Inc. Determining the state of a garage door using vehicle sensors
US9208629B2 (en) 2012-10-30 2015-12-08 Continental Automotive Systems, Inc. Garage door open alert
US20140125499A1 (en) * 2012-11-08 2014-05-08 The Chamberlain Group, Inc. Barrier Operator Feature Enhancement
US9656691B2 (en) 2012-11-14 2017-05-23 Valeo Schalter Und Sensoren Gmbh Method for performing an at least semi-autonomous parking process of a motor vehicle in a garage, parking assistance system and motor vehicle
US20140167961A1 (en) 2012-12-14 2014-06-19 Qualcomm Incorporated Providing alerts, vouchers, or coupons once a plurality of geo-fences have been breached a number of times
US20140266593A1 (en) 2013-03-15 2014-09-18 Vivint, Inc. Garage door status and control via a security system
US9169684B2 (en) 2013-04-26 2015-10-27 GM Global Technology Operations LLC Methods, program products, and systems relating to vehicular garage door control systems
US20140320263A1 (en) * 2013-04-26 2014-10-30 GM Global Technology Operations LLC Methods, program products, and systems relating to vehicular garage door control systems
US20150002262A1 (en) 2013-06-28 2015-01-01 Johnson Controls Technology Company Battery powered rear view mirror display and integrated trainable transceiver unit
US20160101736A1 (en) 2013-06-28 2016-04-14 Gentex Corporation Battery powered rear view mirror display and integrated trainable transceiver unit
US9326100B2 (en) 2013-07-01 2016-04-26 Continental Automotive Systems, Inc. Simple and reliable home location identification method and apparatus
US20150084750A1 (en) 2013-09-25 2015-03-26 The Chamberlain Group, Inc. Appliance Control Using Destination Information
US20150137941A1 (en) 2013-11-15 2015-05-21 Gentex Corporation Internet-connected garage door control system
US20150148983A1 (en) 2013-11-22 2015-05-28 The Chamberlain Group, Inc. Remotely Operating a Movable Barrier Operator with Auxiliary Device
US20150302672A1 (en) 2013-12-18 2015-10-22 Yadvender Singh Kalsi Process, system, method and apparatus for monitoring status and control of equipment
US20150235495A1 (en) 2014-02-18 2015-08-20 David R. Hall System and Method for Partially Opening an Access Barrier
US20150266356A1 (en) 2014-03-19 2015-09-24 Ford Global Technologies, Llc Method and system to enable commands on a vehicle computer based on user created rules
US20150302737A1 (en) 2014-04-18 2015-10-22 Gentex Corporation Trainable transceiver and camera systems and methods
US20150302735A1 (en) 2014-04-18 2015-10-22 Gentex Corporation Trainable transceiver and camera systems and methods
US9620005B2 (en) 2014-04-18 2017-04-11 Gentex Corporation Trainable transceiver and mobile communications device systems and methods
US20150302736A1 (en) 2014-04-18 2015-10-22 Gentex Corporation Trainable transceiver and camera systems and methods
US20150348344A1 (en) 2014-06-02 2015-12-03 Schlage Lock Company Llc System and method for signifying intent for lock operation
US20160018798A1 (en) 2014-07-17 2016-01-21 Toyota Motor Engineering & Manufacturing North America, Inc. Home control system from a vehicle
US20170138111A1 (en) 2014-08-06 2017-05-18 Ben Lietz Methods and Systems to Indicate the Status of Door Operations
US20160055742A1 (en) 2014-08-19 2016-02-25 Ruizu (Ray) Wang Switch Control System and Method Thereof
US9556812B2 (en) 2014-08-22 2017-01-31 At&T Intellectual Property I, L.P. Methods, systems, and products for detection of environmental conditions
US20160053699A1 (en) * 2014-08-22 2016-02-25 At&T Intellectual Property I, L.P. Methods, Systems, and Products for Detection of Environmental Conditions
US20170114585A1 (en) 2014-08-22 2017-04-27 At&T Intellectual Property I, L.P. Methods, Systems, and Products for Detection of Environmental Conditions
US20170106874A1 (en) 2014-09-29 2017-04-20 Ford Global Technologies Llc Unexpected thermal event assist
US9555814B2 (en) 2014-09-29 2017-01-31 Ford Global Technologies, Llc Unexpected thermal event assist
US20160104364A1 (en) * 2014-10-08 2016-04-14 Andrew Brooks Methods and apparatus for monitoring a dock leveler
US9551781B2 (en) 2014-10-30 2017-01-24 Bastille Networks, Inc. Efficient localization of transmitters within complex electromagnetic environments
US20160130853A1 (en) 2014-11-11 2016-05-12 Viking Access Systems, Llc Movable barrier operator with touchscreen interface
US9672670B2 (en) 2014-11-26 2017-06-06 Menklab, LLC Control system for providing cloud based commands for controlling operation of a moveable barrier
US20160148451A1 (en) 2014-11-26 2016-05-26 Menklab, LLC Control system for providing cloud based commands for controlling operation of a moveable barrier
US9581456B2 (en) 2015-01-23 2017-02-28 Toyota Jidosha Kabushiki Kaisha Determining an estimated time of arrival of a vehicle at an endpoint of a journey
US20170034485A1 (en) 2015-03-07 2017-02-02 SkyBell Technologies, Inc. Garage door communication systems and methods
US20160300415A1 (en) 2015-04-09 2016-10-13 Overhead Door Corporation Automatic transmission of a barrier status and change of status over a network
US20160314362A1 (en) 2015-04-22 2016-10-27 Ford Global Technologies, Llc Depth mapping camera for door inside
US20160312517A1 (en) 2015-04-22 2016-10-27 Ford Global Technologies, Llc Vehicle and method of opening and closing a door of the vehicle
US20160321914A1 (en) 2015-04-29 2016-11-03 Gentex Corporation Trainable transceiver with hands free image based operation
US20160343233A1 (en) 2015-05-19 2016-11-24 GM Global Technology Operations LLC Providing a building door reminder in a vehicle
US20160375898A1 (en) 2015-06-24 2016-12-29 Volkswagen Ag Communication device, control device, and system for vehicle
US20180216389A1 (en) * 2015-07-15 2018-08-02 Philip Y. W. Tsui Wireless infrared safety sensor for garage door opener system
US20170030737A1 (en) 2015-07-29 2017-02-02 Ford Global Technologies, Llc Door position sensor and system for a vehicle
US20170108873A1 (en) * 2015-10-15 2017-04-20 Fujitsu Ten Limited Driving assistance apparatus, vehicle, and garage cooperation control system
US20170140646A1 (en) 2015-11-16 2017-05-18 Jiang Lu In-vehicle garage door monitor
US20170147887A1 (en) 2015-11-23 2017-05-25 Ford Global Technologies, Llc Method and apparatus for interior/exterior vehicular environment alerts
US20170154482A1 (en) * 2015-11-27 2017-06-01 Ford Global Technologies, Llc Vehicle liftgate and garage door synchronization
US20170175433A1 (en) * 2015-12-16 2017-06-22 Pinning Inc. Garage door monitoring system
US20180030764A1 (en) * 2016-07-27 2018-02-01 Ford Global Technologies, Llc Motor vehicle and a door hinge mechanism therefor
US20180194344A1 (en) * 2016-07-29 2018-07-12 Faraday&Future Inc. System and method for autonomous vehicle navigation
US20180247475A1 (en) * 2017-02-24 2018-08-30 Ecolink Intelligent Technology, Inc. Automatic garage door control
US9879466B1 (en) 2017-04-18 2018-01-30 Chengfu Yu Garage door controller and monitoring system and method

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Notice of Allowance of U.S. Appl. No. 15/810,609 dated Jul. 11, 2018, 30 pages.
Office Action of U.S. Appl. No. 15/696,211 dated Jan. 2, 2019, 48 pages.
Office Action of U.S. Appl. No. 15/713,782 dated Sep. 7, 2018, 47 pages.
Office Action of U.S. Appl. No. 15/803,293 dated Jul. 9, 2019, 41 pages.
Office Action of U.S. Appl. No. 15/803,293 dated Mar. 22, 2018, 48 pages.
Office Action of U.S. Appl. No. 15/803,293 dated Mar. 29, 2019, 57 pages.
Office Action of U.S. Appl. No. 15/803,293 dated Nov. 29, 2018, 52 pages.
Office Action of U.S. Appl. No. 15/861,027 dated Dec. 14, 2018, 40 pages.
Office Action of U.S. Appl. No. 15/861,027 dated May 1, 2019, 14 pages.
Office Action of U.S. Appl. No. 15/884,730 dated Jan. 10, 2019, 35 pages.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907398B2 (en) 2018-02-12 2021-02-02 The Chamberlain Group, Inc. Movable barrier operator having updatable security protocol
US11851939B2 (en) 2018-02-12 2023-12-26 The Chamberlain Group Llc Movable barrier operator having updatable security protocol
US20200240198A1 (en) * 2019-01-24 2020-07-30 The Chamberlain Group, Inc. Movable Barrier Imminent Motion Notification System and Method
US20200242862A1 (en) * 2019-01-24 2020-07-30 The Chamberlain Group, Inc. Movable Barrier Imminent Motion Notification System and Method
US10837217B2 (en) * 2019-01-24 2020-11-17 The Chamberlain Group, Inc. Movable barrier imminent motion notification system and method
US10846956B2 (en) * 2019-01-24 2020-11-24 The Chamberlain Group, Inc. Movable barrier imminent motion notification system and method
US11210875B2 (en) 2019-01-24 2021-12-28 The Chamberlain Group Llc Movable barrier imminent motion notification system and method
US11225823B2 (en) 2019-01-24 2022-01-18 The Chamberlain Group Llc Movable barrier imminent motion notification system and method
US11220856B2 (en) 2019-04-03 2022-01-11 The Chamberlain Group Llc Movable barrier operator enhancement device and method

Also Published As

Publication number Publication date
US10246930B2 (en) 2019-04-02
US20190048639A1 (en) 2019-02-14
US20190048640A1 (en) 2019-02-14
US10851578B2 (en) 2020-12-01
US10060175B1 (en) 2018-08-28
US10494854B2 (en) 2019-12-03
US20190048647A1 (en) 2019-02-14
US20190048648A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US10358859B2 (en) System and method for inhibiting automatic movement of a barrier
US10490007B2 (en) System and method for automatically controlling movement of a barrier
US10557299B2 (en) System and method for automatically controlling movement of a barrier
CN112204350B (en) Autonomous vehicle and method for planning an autonomous vehicle trajectory
EP4097550B1 (en) Artificial intelligence method and apparatus for remote monitoring and control of autonomous vehicles
US10621452B2 (en) Determining and mapping location-based information for a vehicle
US20180231979A1 (en) Access and control for driving of autonomous vehicle
US10699580B1 (en) Methods and systems for emergency handoff of an autonomous vehicle
KR20210028575A (en) Methods for passenger authentication and door operation for autonomous vehicles
CN112236346A (en) Time warping for autonomous driving simulation
US12055936B2 (en) Autonomous rideshare rebalancing
US20190051173A1 (en) Method and apparatus for vehicle control hazard detection
US20180304887A1 (en) Method and device for reducing a risk of a collision of a motor vehicle with an object
US20200210887A1 (en) Approaches for determining sensor calibration
US11305757B2 (en) Vehicle travel control method and vehicle travel control device
US11414085B2 (en) Vehicle control device, vehicle control method, and storage medium
CN114954438A (en) Vehicle running control method and device, vehicle, readable storage medium and chip
US20190324464A1 (en) System and method for controlling a vehicle at an uncontrolled intersection with curb detection
US20210197800A1 (en) In-vehicle processing apparatus and in-vehicle processing system
US20230036056A1 (en) Vehicle and control method thereof
JP2020144791A (en) Vehicle control system, vehicle control method, and program
US20240286601A1 (en) Parking assistance systems and methods
KR20230033157A (en) DELIVERY system using self-driving vehicles HAVING A STORAGE
JP2020187499A (en) Vehicle control system, vehicle control method, and program

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LICKFELT, BRIAN K.;YOSHIMURA, KENTARO;REEL/FRAME:043927/0238

Effective date: 20171018

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4