US20120007442A1 - Rotary data and power transfer system - Google Patents
Rotary data and power transfer system Download PDFInfo
- Publication number
- US20120007442A1 US20120007442A1 US13/228,595 US201113228595A US2012007442A1 US 20120007442 A1 US20120007442 A1 US 20120007442A1 US 201113228595 A US201113228595 A US 201113228595A US 2012007442 A1 US2012007442 A1 US 2012007442A1
- Authority
- US
- United States
- Prior art keywords
- data
- connector
- transfer
- operable
- communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 84
- 238000004891 communication Methods 0.000 claims abstract description 118
- 238000005520 cutting process Methods 0.000 claims description 36
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 54
- 230000013011 mating Effects 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- 238000000034 method Methods 0.000 description 29
- 230000005540 biological transmission Effects 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 238000004804 winding Methods 0.000 description 17
- 238000013461 design Methods 0.000 description 16
- 239000011162 core material Substances 0.000 description 14
- 230000035699 permeability Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000013144 data compression Methods 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000010196 hermaphroditism Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000541 Marine grade stainless Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005534 acoustic noise Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/18—Rotary transformers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
- H01F2038/143—Inductive couplings for signals
Definitions
- the present invention relates to a connector system providing transfer of electrical power and data communications signals between two systems.
- the connector has no conductive electrical connection and can operate independently of angular orientation.
- Electrical connections are a challenging aspect of underwater electrical system design, electrical conductive contact being the most common method of implementing an electrical mateable connector. Electrically conductive contact connectors are commonly subject to corrosion and contamination, which can result in a resistive contact point and failure of the connector function. In under water applications water must be excluded from the conductive contacts to prevent short circuits due to the partially conductive nature of water. Wet mating connections are even more challenging since water must be expelled from the conductive contacts during mating and care must be taken to ensure the signal is not applied to the connector while the contacts are exposed to the water before the connection is made to avoid rapid electrolytic corrosion. Connectors that do not rely upon direct conductive contact avoid these issues.
- any multi-pin connector must be rotationally aligned to ensure registration of the intended cross connections. This requirement can be problematic, particularly in applications where the connection point is not readily accessible by an operator such as connection by an autonomous system deep in the ocean.
- Slip ring connectors have been designed to avoid this issue but typically employ conductive brush contacts which are subject to corrosion and contamination issues, suffer continuous mechanical wear in rotating applications and present the challenging requirement of an underwater sealed rotating mechanical joint to exclude water from the brush contacts.
- An electrically insulated data and power connection which mates independent of angular alignment would be beneficial in many underwater applications.
- Slip rings may be located at the axis of rotation or with an open bore positioning the ring coupling mechanism set out a radial distance from the axis of rotation. This second class of slip ring is defined as “off axis”.
- WO01/95529 describes an underwater communications system that uses electromagnetic signal transmission. This system has a transmitter and a receiver, each having a metallic, magnetic coupled aerial surrounded by a waterproof electrically insulating material.
- Use of electrically insulated magnetic coupled antennas in the system of WO01/95529 provides various advantages. This is because magnetically coupled antennas launch a predominantly magnetic field.
- a similar arrangement is described in GB2163029. Whilst the communications systems of WO01/95529 and GB2163029 have some technical advantages over more conventional acoustic or radio link systems, the functionality described is limited, and for many practical applications the available bandwidth is highly restrictive, as is distance over which data can be transmitted.
- Magnetic antennas formed by a wire loop, coil or similar arrangements create both magnetic and electromagnetic fields.
- the magnetic or magneto-inductive field is generally considered to comprise two components of different magnitude that, along. with other factors, attenuate with distance (r), at rates proportional to 1/r 2 and 1/r 3 respectively. Together they are often termed the near field components.
- the electromagnetic field has a still different magnitude and, along with other factors, attenuates with distance at a rate proportional to 1/r. It is often termed the far field or propagating component.
- a data and power transfer system comprising a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power between one another whilst electrically insulated from one another.
- the data and power transfer system being operable to transmit data and power between the first system unit and second system unit without the need for direct electrically conductive contact means, so that in essence they are electrically insulated from one another, that in environments or uses where implementing a direct electrical contact between two system units could compromise either of the units, data and power transfer is possible which maintaining the integrity of each system unit.
- the data and power transfer system comprises a first system unit and a second system unit arranged to form an off axis connector arrangement.
- the connector elements are aligned about a common axis.
- the first connector element and the second connector element may be rotatable relative to one another.
- the data and power transfer system may further comprise an actuating system, connected to one of said first and second system units, wherein the actuating mechanism is operable to interface with the connector element and communication element of the system unit.
- the actuating mechanism may further comprise a controller unit operable to receive data from the interfaced connector unit and a tool unit, such that the controller is operable to control the tool unit in response to data received.
- the tool unit may be a cutting tool.
- a tool system comprising a data and power transfer system which includes a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power between one another whilst electrically insulated from one another and a tool unit whereby the tool unit is interfaced with one of said first system unit and second system unit.
- the connector elements are electrically insulated from one another and therefore transmit power without the need for direct electrically conductive contact, they are suitable for use in environments where direct electrically conductive contact could be detrimental to the system.
- the data and power transfer system comprises a first system unit and a second system unit arranged to form an off axis connector arrangement.
- the connector elements are aligned about a common axis.
- the first connector element and the second connector element may be rotatable relative to one another.
- the tool system may be a rotary tool system.
- the data and power transfer system may be a rotary data and power transfer system.
- the present invention relates to an off axis connector system for the transfer of electronic signals and electrical power between two units without the need for direct electrically conductive contact and independent of connector rotation about the mating axis. Signals are communicated by employing electro-magnetic coupling to remove the need for direct electrical conductive contact.
- Power transfer is achieved through a closely coupled transformer structure at the interface between the primary and secondary halves of the system which may rotate relative to one another.
- the through water radio communication system may be located either side of the power coupling structure since data communications can be accomplished over a greater coupling distance than electrical power transfer.
- This arrangement separates power transfer from data communications functions allowing each to be designed more efficiently as components of a combined system.
- a combined rotary data and power transfer system may be used to power, monitor and control equipment on the secondary side of the system which may rotate relative to the primary.
- Power and data link provision to rotating electrical equipment is a common requirement.
- By integrating the delivery of electrical power and wireless data transmission in a single system a variety of tasks can be efficiently accomplished.
- the primary side of the data and power system is fixed to a subsea pipe structure.
- the secondary side interfaces to a rotary cutting mechanism. Blades are used to cut through a steel pipe which passes through the center of the present rotary data and power transfer system. The purpose of this arrangement is to cut through the lower section of pipe. Electrical power is supplied to the secondary side to power the cutting blades.
- the cutting blades are equipped with a sensor system which monitors the cutting resistance and this data is transmitted back across the rotating interface by the integrated through water communications system. A control system then varies the cutting speed in response to this measured cutting resistance by transmitting cutting motor control data back across the rotating interface.
- the cutting system described here is enabled by the rotary data and power transmission system of the present invention.
- rotary systems which may incorporate the disclosed rotary data and power transfer system include, but are not limited to; rotary propulsion systems; rotary welding systems; pipe deployment systems; pipe inspection systems; rotary machines; pumps.
- the system may effectively communicate through the material of the seabed.
- the rotary cutting system may descend into the seabed to effect a cut below the surface.
- the connector employs a circular coil structure surrounded by a flux guiding enclosure that inductively couples energy from a primary winding to a secondary coil arranged at an equal radial distance displaced along the axis of symmetry.
- the flux guiding enclosure is elongated in the radial plane to reduce the magnetic reluctance of the gap, which is present at the mating surface.
- Multiple independent channels may be implemented by arranging multiple coupling coils at different radial distances in a common plane centered round a common axis.
- the design can support multiple independent power or data channels independent of connector rotation about the axis of symmetry.
- the electrically insulated nature of the connector assembly lends itself to underwater applications or situations where there is a high probability of liquid contaminants.
- the connector provides a highly reliable underwater connector function without the limitations imposed by the need to keep a conductive contact dry.
- the connector can also be “wet mated” entirely submerged under water without the need to devise a complex mechanical assembly to expel water from the contact area.
- Coupling efficiency is improved by minimizing the gap between flux guiding enclosures at the mating surface.
- This connector design has two distinct classes of application. Firstly as a static connection that can be mated independent of angular orientation so simplifying automated connector mating. Here the mating faces are not required to rotate significantly once the connection has been made so the gap between faces can be minimized by using metal to metal contact or physical contact of protective painted surfaces.
- a second class of application is as a rotating connector and in this case, mechanical measures must be taken to reduce friction between rotor and stator at the mating surface. In this case a plastic sheet will be attached to the mating surface of each connector half-preferably constructed from an oil impregnated nylon material or alternative material exhibiting low sliding kinetic friction.
- an electrical connector comprising a circular primary coil winding magnetically coupled to a secondary circular coil in a connected mating half through a magnetic flux guiding structure that is elongated either side of the coil in the plane of the coil to form flux coupling wings.
- the connector structure is rotationally symmetric with an unoccupied area about the center of symmetry. Connector mating is independent of angular orientation about the connector's axis of symmetry
- the primary and secondary coils are substantially aligned about a common axis of rotational symmetry and the cross sectional width of the rotationally symmetric connector structure is less than the inner radius dimension.
- the flux guiding structure is constructed from a material having a relative permeability greater than 10 and comprises flux coupling wings either side of a central coil enclosure. It is composed of at least two sections divided by a linking electrically insulated material. Wing length is greater than 2 times the flux guide material thickness and less than 50 times the gap dimension separating the primary flux guide from the secondary flux guide at the mating surface. A material with low coefficient of sliding kinetic friction is located between the mating surfaces to facilitate relative rotation of the connector halves.
- connection channels are implemented by separate concentric primary coils coupled to corresponding secondary coils
- the connector components allow mating to any other connector component.
- the volume enclosed by the flux guiding structure is filled with electrically insulating material in at least one position along its circumference or continuously filled with insulating material to prevent a shorted loop resulting from the enclosed partially conductive water.
- An optical communications connector or conductive slip ring connector may be positioned at the center of rotational symmetry to provide additional independent functionality.
- an object of the present invention is to provide an improved underwater communication systems, and its methods of use, that uses electromagnetic waves for communication and propagation.
- Another object of the present invention an underwater communication system, and its methods of use, for communication and propagation that increases the distance over which information can be transmitted.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation that increases the useful information rate.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation with improved data compression by reducing the transmitted bit rate.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation where the transmitted bit rate is reduced when there are a number of types of information sources.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation that has a resultant reduced bit rate that allows lower transmitted signal frequencies to be adopted.
- Another object of the present invention an underwater communication system, and its methods of use, for communication and propagation that has lower transmitted signal frequencies to achieve greater distance and/or allow greater rates at a particular distance.
- an underwater communications system for transmitting electromagnetic and/or magnetic signals to a remote receiver that includes a data input.
- a digital data compressor compresses data to be transmitted.
- a modulator modulates compressed data onto a carrier signal.
- An electrically insulated, magnetic coupled antenna transmits the compressed, modulated signals.
- an underwater communications system in another embodiment, includes a receiver that has an electrically insulated, magnetic coupled antenna for receiving a compressed, modulated signal.
- a demodulator is provided for demodulating the signal to reveal compressed data.
- a de-compressor de-compresses the data.
- an underwater communications system in another embodiment, includes a transmitter for transmitting electromagnetic and/or magnetic signals.
- a receiver receives signals from the transmitter.
- At least one intermediate transceiver receives electromagnetic and/or magnetic signals from the transmitter and passes them to the receiver.
- At least one of the transmitter and receiver is underwater and includes an electrically insulated, magnetic coupled antenna.
- FIG. 1A shows an embodiment of a through water communications element suitable for use in a rotary data and power transfer system of the present invention
- FIG. 1B shows an alternatively embodiment of a through water communications element suitable for use in a rotary data and power transfer system of the present invention
- FIG. 1C shows a rotary transformer element suitable for use in a rotary data and power transfer system of the present invention
- FIG. 1D shows an embodiment of a rotary data and power transfer system
- FIG. 1E shows an embodiment of a rotary pipe cutting system
- FIG. 1F shows a block diagram of a rotary pipe cutting system
- FIG. 1G shows another embodiment of a rotary pipe cutting system
- FIG. 2 shows a single channel connector element mating face
- FIG. 3 shows a cross sectional view through a pair of rotationally symmetrical mated connector elements
- FIG. 4 shows a two channel connector element mating face
- FIG. 5 shows a plan view and corresponding cross sectional view of a connector element installed around a pipe section
- FIG. 6 shows a plan view and corresponding cross section view of a single section of a first embodiment of a flux guiding enclosure
- FIG. 7 shows a plan view and corresponding cross section view of a single section of a second embodiment of a flux guiding enclosure
- FIG. 8A shows a connector element mounted on a conical guiding pin
- FIG. 8B shows a connector element mounted on guiding pin provided on a submersible vehicle where a guiding pin forms part of the vehicle's nose section;
- FIG. 9 shows dimensions relevant to one embodiment of flux guide design
- FIG. 10 shows a schematic diagram of one embodiment of a rotary data and power transfer system in use
- FIG. 11 shows a schematic diagram of another embodiment of a rotary data and power transfer system in use
- FIG. 12 shows an axial rotary connector positioned at the center of a connector element
- FIG. 13 shows a plan view and a corresponding cross section view of an embodiment of pair of corresponding connector elements
- FIG. 14 is a block diagram of one embodiment of an underwater transceiver suitable for use in the system of the present invention.
- FIG. 1A there is shown an example embodiment of a through water communications element 1 A which is in this case has a radio transmission component which in this case is a loop antenna 10 which combines transmit and receive loop antenna windings in a single overall outer jacket. As can be seen, antenna 10 interfaces to radio modem unit 12 .
- FIG. 1B there is shown an alternative example embodiment of the through water radio communications element 1 B which comprises electrodes 14 and 16 connected by cable 3 to form an electric dipole antenna 11 which interfaces with radio modem 18 .
- FIG. 1C there is shown a rotary transformer element 20 which, in use, interfaces with a similar transformer (not shown) to couple electrical power without conductive contact.
- FIG. 1D illustrates a relative positioning of components arranged for use as one embodiment of an off axis rotary and power transfer system of the present invention.
- radio modem transducer loop 10 A is arranged adjacent primary transfer element 20 A which, in use, is arranged adjacent second transformer element 20 B which is in turn adjacent radio modem transducer loop 10 B.
- radio modem transducer loop 10 A communicates data, as indicated by arrow 22 , with radio modem transducer loop 10 B.
- Primary transformer element 20 A couples electrical power to closely coupled secondary transformer element 10 B. As is shown in this example embodiment, these components are deployed substantially about a common axis 21 and the secondary elements 10 B and 20 B are free to rotate relative to the primary components 10 A and 20 A.
- Loop antennas 10 A and 10 B will typically interface with radio modem units (not shown) in a manner similar to the arrangement illustrated in FIG. 1A .
- Transformer elements 20 A and 20 B will interface with power transmission and conditioning units as described later in this application.
- FIG. 1E shows a rotary pipe cutting system 22 according to an embodiment of the present invention.
- pipe 24 passes through the center of the “off-axis” rotary data and power transfer system 19 .
- Primary loop antenna 10 A communicates data with secondary loop antenna 10 B.
- Primary transformer element 20 A transfers electrical power to secondary transformer element 20 B.
- the rotary pipe cutting system unit 23 is provided with a secondary controller 26 which is electrically connected to secondary transformer element 20 B.
- Secondary controller 26 controls the cutting motor (not shown) speed which causes cutting blade 28 to rotate and cut. Secondary controller 26 also monitors the cutting resistance encountered by cutting blade 28 .
- FIG. 1F shows a block diagram of the rotary cutting system 22 of FIG. 1E .
- primary controller 8 issues a cut start command through primary radio data modem 10 A to secondary radio data modem 10 B which passes on the command to secondary controller 26 .
- Primary controller 8 also receives data from radio modem 10 A and passes control information to radio modem 10 A.
- Primary controller 8 also controls primary power transfer element 20 A.
- Primary transformer element 20 A transfers electrical power to secondary transformer element 20 B.
- Secondary controller 26 controls the speed of cutting motor 27 which causes cutting blade 28 to rotate and cut.
- Secondary controller 26 also monitors, by means of cutting resistance monitor sensor 29 , the cutting resistance encountered by cutting blade. Secondary controller 26 relays data from cutting resistance monitor 29 through radio modem 10 B via radio modem 10 A to primary controller 8 .
- FIG. 1G shows a cross section of a second embodiment of rotary pipe cutting system.
- pipe 6 is inserted into one end of the center of the “off-axis” rotary data and power transfer system 19 .
- Primary loop antenna 10 A which is supported on cutting system support 5 , communicates data with secondary loop antenna 10 B.
- Primary transformer element 20 A transfers electrical power to secondary transformer element 20 B.
- the rotary pipe cutting system unit 23 is provided with a secondary controller 26 which is electrically connected to secondary transformer element 20 B.
- Secondary controller 26 controls the cutting motor 27 speed which causes cutting blade 28 to rotate and cut.
- Secondary controller 26 also, though cutting resistance monitor 29 , monitors the cutting resistance encountered by cutting blade 28 .
- FIG. 2 shows the mating face 32 of a single channel connector part 30 .
- Multiple circular turns form the primary coil 11 of a transformer system element 11 A.
- a ferrous metal flux guiding structure 34 encloses the coil 11 and is extended to form coupling “wings” 36 and 38 .
- the central region 39 of the single channel connector 30 structure is open and is available to enclose other structures, for example local mechanical structures (not shown), without significantly affecting connector 30 performance.
- This class of slip ring connector is often termed “off-axis”.
- Section A-A is represented in detail in FIG. 11B .
- the cross sectional width x of the rotationally symmetric connector structure through section A-A is less than the inner radius dimension r.
- FIG. 11B shows a cross sectional view through part of a rotationally symmetrical mated connector 34 A shown as section A-A in FIG. 2 that has a first half 71 , wherein the connector part 30 A is of the form shown in FIG. 2 , that has a multiple turn primary coil 11 A and a second half 73 , where the connector part 30 B is of similar shape and construction to connector part 30 A in which is located a multiple turn secondary coil 11 B.
- the cross section is symmetrical about a horizontal plane h and this plane of symmetry represents the mating surface 32 between the two-connector parts or “halves” 30 A, 30 B.
- Both halves 30 A, 30 B are mechanically similar, which allows the possibility of mating any suitable connector to any other without the limitations imposed by a more typical keyed conductive connector (not shown). This degree of connection flexibility is commonly referred to as a “hermaphrodite” connector.
- Enclosing the primary coil 11 A is a first flux guiding structure 34 A and enclosing the secondary coil 11 B is a similarly shaped second flux guiding structure 34 B.
- Each guiding structure 34 A, 34 B is elongated parallel to the mating surface to form wings 36 A, 36 B, 38 A and 38 B.
- Wing structures 36 A, 36 B, 38 A and 38 B increase the surface area of the mating face 32 A, 32 B of coupling region 39 so reducing the magnetic reluctance of the gap at the interface between the first and second connector halves 30 A, 30 B.
- the effective relative permeability of the whole magnetic circuit is determined almost entirely by the gap distance and relatively little by the relative permeability of the core material.
- bearing surfaces 40 A and 40 B are formed from a material with a low coefficient of sliding kinetic friction.
- the layer of bearing surface material 40 is bonded to the top connector half 30 A while layer 40 B is bonded to the lower half connector 30 B.
- Nylon impregnated with lubricating oil will be a suitable material for some applications.
- Layers 40 A and 40 B ensure a controlled separating distance between the two flux guiding enclosures 34 A and 34 B and low mechanical resistance to rotational movement. This reduces the torque necessary to maintain rotational movement where desired and improves the deployed operational life of the connector due to reduced mechanical abrasion.
- Flux guides, 34 B and 34 A, of the two, mated connector parts 30 A, 30 B form a magnetic circuit which couples magnetic flux generated in the primary coil 11 A to the secondary coil 11 B.
- the selected magnetic material of the primary and secondary coils 20 A and 20 B may have a comparatively low value of relative permeability (for example 10 ) allowing the freedom to select a material with suitable mechanical and chemical properties for this challenging underwater application.
- Flux guides 34 A and 34 B may be manufactured from a ferrous metal, for example 316 or 904 L marine grade stainless steel.
- Regions 25 A and 25 B represent the area within the flux guiding enclosure 34 A and 34 B not fully occupied by the material of the transformer coils 11 A, 11 B. If water were allowed to occupy these regions it would form a shorted turn due to the partially conductive nature of impure water. A current would be induced in opposition to the transformer coils 11 A, 11 B and this would impact connector efficiency. To avoid this effect, areas 25 A and 25 B are filled with an insulating material either continually around the connector circumference or at intervals to break the parasitic conductive circuit. For ease of manufacturing these areas can preferably be filled with an insulating epoxy resin material.
- FIG. 4 shows the mating face of a two-channel connector 32 C.
- two separately wound primary coils 21 A and 21 C are provided within flux guiding enclosures 34 A and 34 C.
- This principle can be extended to implement any number of independent flux guiding enclosures, or channels, 34 n by adding additional independent coils 21 n at separate radial distances (not shown).
- Separate channels 34 n may be used to carry independent communications channels or a mixture of power and data channels. Multiple power channels may be added to increase the power capacity of the connector system.
- a gap (not shown) is introduced at the interface 44 between two adjacent wings 36 n and 38 n+ 1 (not shown) to reduce cross coupling between adjacent channels.
- FIG. 5 shows a plan view of the connector installed around a pipe section 50 and a corresponding cross sectional view taken through the plane marked X-Y on the plan view.
- a static component 51 for mating with the underside of a rotatable component 52 .
- the connector of FIG. 5 can be deployed around an existing structure, as illustrated by the pipe 50 .
- the 50 pipe will have minimal impact on the connector efficiency since the flux guiding enclosures 34 A and 34 B effectively contains the coupling region 25 within the connector structure 31 .
- FIG. 6 shows plan view and cross section view for a single section 33 A of the flux guiding enclosure 34 of FIGS. 2 and 3 .
- the material chosen for the flux guiding structure 34 may have significant bulk electrical conductivity so the circular structure must be insulated at some point along its radius to prevent a shorted conductive turn, which would reduce connector efficiency.
- Flux guide sections 34 are connected using an electrically insulating material (not shown) to avoid a shorted turn.
- FIG. 6 illustrates a 45 degree section 33 A but the number of sections selected for a particular installation is a design freedom governed by ease and cost of manufacture.
- FIG. 7 shows plan and cross section for a single section 33 B of the flux guiding enclosure 34 manufactured from straight section materials.
- the width of the flux guiding wings 36 , 38 introduces, in use, a degree of tolerance to radial misalignment of the primary coils to secondary coils (not shown in FIG. 7 ). This feature allows the possibility of constructing the circular structure from a number of linear sections with attendant simplification, and hence cost reduction, of the manufacturing process.
- FIG. 8A shows one half of a connector 71 mounted on a conical guiding pin 72 for mating with a coupling ring 73 .
- a conical guide 72 reduces the alignment accuracy required for mating.
- Connector mating can tolerate an initial center misalignment by a distance equal to +/ ⁇ the coupling ring 73 inner radius since the conical pin section 72 will act to guide the connector part 71 to meet with connector part 73 if given freedom of movement perpendicular to the mating travel direction E-F.
- FIG. 8B shows a connector for a submersible vehicle 80 .
- the first component 71 is mounted on the vehicle's nose section 72 , which is shaped conically so as to form a connector guiding structure.
- the submersible vehicle 80 moves along axis B to C, as indicated in the diagram, to make contact with the second connector 73 .
- Connector mating can tolerate mis-alignment of the vehicle heading by a distance equal to +/ ⁇ the coupling ring 71 , 73 inner radius r since the conical nose section 72 will act to guide the final approach of the vehicle 80 .
- This arrangement is particularly beneficial since the mating axis is aligned with the primary direction of travel of the vehicle 80 .
- the nature of submerged vehicle dynamics ensures the necessary freedom of guided movement in the plane perpendicular to the direction of travel.
- Connector coupling is essentially due to a transformer action.
- Primary and secondary windings may be arranged with a turns ratio desired by the individual application with the resultant relationship between primary and secondary voltage following the usual transformer design principles.
- Direct contact of the metallic flux guiding enclosures may be acceptable in applications where little relative rotational movement is experienced. In applications with significant angular rotation direct metallic contact is unlikely to be acceptable due to mechanical abrasion and frictional resistance to movement and in these applications a gap must be devised between flux guides.
- a non-magnetic material such as PTFE (Poly Tetra Fluoro Ethylene) may be used as a spacer, but the effect is similar to the introduction of an air gap into the core of a magnetic induction device.
- the size of the gap is critical and is related to most of the key performance measures of the device. Coupling efficiency decreases with increasing gap size and in many applications the spacer layer will several millimeters thick.
- the flux guide design features extended “wings” to each side of the winding. These are intended to reduce the reluctance of the magnetic circuit that is much higher than normal in a transformer due to the gap at the mating surface. The larger the wings, the lower the reluctance of the magnetic circuit, minimizing the impact of the gap on performance. However, because most of the flux is concentrated near the windings, there are diminishing returns as the wings are extended.
- FIG. 9 shows dimensions relevant to flux guide design.
- the design aim is to reduce the reluctance of the magnetic circuit formed by the primary flux guide, gaps and secondary flux guide.
- the magnetic reluctance of each of these elements is defined by equation 1.
- Total reluctance of the magnetic circuit is simply the sum of primary flux guide, inner gap, secondary flux guide and outer gap reluctance.
- the total magnetic reluctance is dominated by the gap since relative permeability is close to unity while the ferrous core material of the flux guide may have a relative permeability of over 1000.
- the cross sectional area of the air gap, or plastic spacer can be increased by many times hence lowering the reluctance of this circuit element.
- the gap path length can also be minimized and the small gap length to area ratio can compensate for the low permeability of this section.
- Wing length 90 will beneficially be greater than twice the guide material thickness 91 and typically sees little benefit from further extension once the gap reluctance is small compared to the flux guide reluctance.
- the magnetic circuit formed by the flux guide enclosures must provide enough space to accommodate the primary winding that provides the magneto-motive force in the system.
- the secondary flux guide must also accommodate a secondary winding of similar or slightly larger size.
- the winding cavity must also provide space for insulating material and protective encapsulation for safe and reliable operation at the required voltage and temperature in a conductive seawater environment.
- the flux guide design dimensions are represented by; 93 the horizontal covering section; 94 the side wall height; 91 the flux guide thickness; 90 the wing width.
- the number of turns in the windings is partly determined by the need to control the magnetizing current and more turns are needed in this case because of the high reluctance in the magnetic circuit due to the gap.
- the copper loss under no-load conditions will be high as a result and a large winding aperture is required to accommodate large cross section wire to reduce electrical resistance.
- dimensions 93 and 94 should be minimized to fit closely around the required transformer coil volume.
- Transformer core losses due to eddy currents are proportional to core volume and in the present design the flux guide enclosure acts as a transformer core.
- the volume of the core must be sufficient to avoid magnetic saturation.
- the saturation flux density is about 1.5 Tesla.
- FIG. 10 shows an example application of the connector system that transfers electrical power and data from a source system 107 to a connected system 108 .
- the source system 107 includes a data source 103 and an AC power source 101 the outputs of which are coupled into the primary coil of the connector.
- the connected system 108 is coupled to the secondary connector coil, so that data and/or power can be magnetically coupled from the source system 107 to the other system 108 via the primary and secondary coils.
- Coupling efficiency reduces as frequency increases because of leakage inductance effects. Eddy current losses increase with frequency so also act to reduce the bandwidth available for data transmission. Data and power transmission can be separated in frequency to allow simultaneous operation of the two functions. Transfer efficiency is more critical for power transfer than for communications applications so a higher frequency will usually be assigned to the communications signal.
- Communications modulator 103 takes a data input and generates an analogue or digital modulated carrier signal.
- a high pass filter 102 can be used to isolate the modulator 103 from high power AC (Alternating Current) source 101 .
- Subsea connector system 100 couples the AC power signal and communications signal to the connected system 108 .
- the communications signal can be separated from the AC power in the secondary coil by a high pass filter arrangement 105 .
- Data is extracted from the modulated carrier at the communications de-modulator 106 .
- the larger coupled waveform delivers AC power 104 to the connected system.
- an inductive connector system of the type described here with an internal diameter of 1.8 m and external diameter of 2 m is supplied with a 240 V, 4.2 A r.m.s. alternating current, 1 kW power.
- Primary to secondary coil turns ratio is 1:1 delivering a 240 V r.m.s. supply to the secondary coupled system.
- An oil impregnated nylon spacer fills the 2 mm gap between the connector halves to provide low friction rotational movement.
- the primary and secondary coils are constructed from 100 turns of 1211 B6 AWG enameled copper wire occupying a cross sectional area 30 mm wide by 20 mm deep.
- the flux guide is manufactured from 5 mm thick 316 grade stainless steel.
- FIG. 11 shows an alternative arrangement that couples power and data through separate channels in a single multi-channel connector structure.
- Communications modulator 113 in system 118 takes a data input and generates an analogue or digital modulated carrier signal which is coupled through connector 110 channel A.
- AC (Alternating Current) source 111 couples through connector 110 channel B to the connected system 119 .
- Data is extracted from the modulated carrier at the communications de-modulator 116 .
- the larger coupled waveform delivers AC power 114 to the connected system.
- FIG. 121 shows an on-axis rotary connector 121 positioned at the center of the present connector structure 120 .
- the area around the rotational axis of the present design is not occupied by the present off-axis, open bore connector structure so is available for additional power or data connectors.
- this connector could be an optical rotary connector as described in CA1166493A1 or a conductive slip ring as described in EP1766761A2 capable of supporting data communications or power transfer.
- FIG. 13 shows a design for axially registering two mating connectors.
- the mating parts are annular and mounted in the annulus of the guide structure.
- Each part has a backing plate 131 that acts as an end stop to movement along the axis of rotation.
- Mounted on each backing plate 131 are raised crenulations or teeth 130 that interlock one connector component to another so as to prevent rotational movement and axial misalignment.
- the mating parts on each connector part are identical to provide a hermaphrodite connector mating compatibility.
- an inner ring structure 132 is provided to restrict, movement perpendicular to the axis of rotational symmetry. This abuts the inner face of the backing plate, without impeding engagement of the crenulations or teeth 130 .
- the communication systems may use a known communications transceiver 140 that has a transmitter 142 , a receiver 144 and a processor 146 which can be connected to an analogue or digital data interface (not shown), as illustrated in FIG. 14 .
- Both the transmitter and receiver 142 and 144 respectively have a waterproof, electrically insulated magnetic coupled antenna 148 and 149 .
- a single antenna can be shared between transmitter and receiver (not shown).
- a magnetic coupled antenna is used because water is an electrically conducting medium, and so has a significant impact on the propagation of electromagnetic signals.
- each insulated antenna assembly is surrounded by a low conductivity medium that is impedance matched to the propagation medium, for example distilled water.
- Electrically insulated magnetic coupled antennas may be used in the communication systems shown in the embodiments of the present invention because in an underwater environment they are more efficient than electrically coupled antennas. Underwater attenuation is largely due to the effect of conduction on the electric field. Since electrically coupled antennas produce a higher electric field component, in water in the near field, the radiated signal experiences higher attenuation. In comparison a magnetic loop antenna produces strong magneto-inductive field terms in addition to the electromagnetic propagating field. The magneto-inductive terms are greater than the propagating field close to the transmitting antenna and provide an additional means for coupling a signal between two antennas. For both shorter and greater distances, magnetic coupled antennas are more efficient under water than electrically coupled.
- the magnetic antenna should preferably be used at lowest achievable signal frequency. This is because signal attenuation in water increases as a function of increasing frequency. Hence, minimizing the carrier frequency where possible allows the transmission distance to be maximized. In practice, the lowest achievable signal frequency will be a function of the desired bit rate and the required distance of transmission.
- any of the above embodiments wherein an underwater communications system is provided for transmitting data to a remote receiver may include a data input; a data compressor for compressing data that is to be transmitted; a modulator for modulating the compressed data onto a carrier signal and an electrically insulated, magnetic coupled antenna for transmitting the compressed, modulated signals.
- a data input for compressing data that is to be transmitted
- a modulator for modulating the compressed data onto a carrier signal
- an electrically insulated, magnetic coupled antenna for transmitting the compressed, modulated signals.
- data in some applications of the present invention can be encrypted before transmission and decrypted after receiving, when desired for reasons of security.
- a low carrier frequency is usually optimal to maximize distance, there may be occasions when a higher frequency is satisfactory but more desirable in order to reduce the distance over which an unwanted receiving party can detect the signal, as in deliberately covert operation of a communication system.
- Error correction techniques may be applied to the information transferred. Error correction techniques slightly increase the amount of data which must pass over the communication links themselves, but can be advantageous in allowing operation at greater distances which otherwise would have resulted in unreliable transfer of information. Error correction can be of the types commonly and generically known as forward error correction (FEC) and automatic repeat request (ARQ). For somewhat random errors which are well spaced and do not occur in long runs, FEC is preferable; and beneficially the effectiveness of FEC may be increased by first applying an interleaving process, as known in the art.
- FEC forward error correction
- ARQ automatic repeat request
- an acoustic transmitter and receiver system may be used as the means of providing wireless data communications across the rotating interface.
- an optical transmitter and receiver system may be used as the means of providing wireless data communications across the rotating interface.
- the communications module of the present invention may include a receiver that has an electrically insulated, magnetic coupled antenna for receiving electromagnetic signals.
- the module is preferably operable to present received text/data and/or video/images on the module display.
- the transmitter and the receiver may share a single electrically insulated, magnetic coupled antenna.
- system of the present invention can be configured to change the carrier frequency to optimize the information communication rate for the transmission range and conditions encountered.
- the system of the present invention can be configured to establish a connection; commence transmission at a first frequency; once communication is established, vary the frequency and select the frequency based on the received signal strength.
- the magnetic coupled antenna used with certain embodiments of the present invention can be based on loops or solenoids.
- the solenoid may be formed around a high magnetic permeability material.
- Near field subsea magneto-inductive communications links can support much higher carrier frequencies than possible in the far field.
- communication in the near field allows a significantly higher signal bandwidth than is available for far field transmissions.
- the near field components are relatively greatest close to an antenna, their rate of decline with distance is faster than that of the far field component
- the antenna is magnetic, the important advantage of lower loss is gained over conventional electromagnetic antennas of the types commonly used in free space.
- the relative initial strength of the magnetic field in comparison with the electromagnetic field is considerably greater still.
- the communications element may include an electric dipole arrangement used as a transmit or receive transducer to couple the electrical signal into or out of the water.
- a Voltage is developed between two spaced electrodes in direct conductive contact with the water.
- receive an amplifier monitors the potential developed across two spaced electrodes in direct conductive contact with the water.
- At least one of the transmitter and receiver includes means for varying the signal gain. This is advantageous for systems in which one or both antennas may be subjected to wave wash, where the antenna is periodically partially or wholly immersed in water. By providing means for varying the gain, performance can be maintained even when one or more of the antennas is subject to wave wash.
- communications system elements of the above embodiments may include a device for transmitting electromagnetic signals and means for transmitting acoustic signals and/or optical signals.
- the system of this embodiment can be controlled such that the optimal route for communication is utilized be it electromagnetic, acoustic or optical. Under different or changing conditions, one or more of these methods may provide superior performance at different times.
- the reduction of received interfering noise will be important. This may be accomplished in the system of the present invention by filtering the received signal to the minimum bandwidth possible, consistent with the bandwidth of the wanted signal, before making decisions on the received digital signal states.
- digital bit states may be represented in transmission by known and readily distinguishable sequences of sub-bits transmitted at a higher rate, and correlation techniques adopted to determine the likely presence of each sequence and hence the value of each received bit. Such techniques will be familiar to those skilled in the techniques of communication in other fields.
- the spread spectrum technique is enhanced if the known RAKE method is also adopted in receivers.
- un-modulated methods without a carrier also may be adopted, wherein a representation of the baseband data is used directly to energize the antenna.
- the operating signal carrier frequency will depend on the particular application.
- the carrier frequency is selected as a function of the data transfer rate and the distance over which transmission has to occur. For example, for short-range communications where a high data rate is required, a relatively high frequency would be used, for example above 1 MHz. In contrast for long-range communications where attenuation losses are likely to be a problem, relatively low frequencies would be used, for example below 1 MHz, and in many cases below 100 kHz.
- an adaptive carrier frequency based on range of operation is chosen to maximize the information rate possible for the given signal path. The most significant influence on the optimum frequency to choose will be the range between the communicating systems.
- One implementation uses multiple fixed frequencies that are known to all communicating stations. To first establish a connection, transmission commences on the lowest frequency. Once communication is established, the systems may then adapt the frequency of operation up and down to maximize data rate. This may be performed based on the received signal strength.
- An alternative scheme employs the lowest frequency at all times to maintain timing and to communicate the main frequency being chosen to carry information.
- the electromagnetic communication system which may be included in embodiments of the invention as detailed here within, may be combined with acoustic communication and/or with optical communication to provide enhanced capability.
- acoustic communications offer long-range capability they are limited in terms of robust operation in noisy environments and can only offer a limited bandwidth.
- the range of operation is limited with electromagnetic communications but it is immune to acoustic noise and has a wide bandwidth capability.
- a system of the present invention can include an acoustic modem and an underwater electromagnetic communications system as described above.
- the two systems can be combined in a processing unit to select the communications path based on appropriate criteria. These criteria may include factors such as measured error rates, range of operation, measured signal strength or required bandwidth. If very high bandwidth is required when the ends of the communication link are close enough to allow optical communication, this method similarly may be brought into operation in preference to, or in addition to, electromagnetic communication.
- Directional antennas may be adopted to concentrate and maximize the power which a transmitter sends in the direction of a receiver and, by the principle of reciprocity, which a directional receive antenna can intercept. In as much as directional properties can be improved, communication range will be increased. If transmit and/or receive antennas are steered towards each other, preferably with dynamic real-time adjustment, then the optimum signal can be provided at all times. Diversity techniques employing multiple antennas at receive and/or transmit sites may be adopted, and intelligent switching adopted to use the most advantageous signal path at any time.
- the magnetic and electromagnetic field from a transmitter may be increased by using latest magnetic core materials of the highest possible permeability in the antenna in order to increase magnetic flux for given antenna dimensions.
- magnetic coupled antennas may be used, electromagnetic antennas of plain wire similar to those of conventional radio methods, and electric antennas which predominantly excite and detect an electric field, can also be deployed; and they may be deployed in combination to achieve the strongest aggregate received signal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
A data and power transfer system comprising a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power; and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power, wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power whilst electrically insulated from one another.
Description
- This application is a continuation-in-part of U.S. Ser. No. 12/366,856, which application is fully incorporated herein by reference.
- The present invention relates to a connector system providing transfer of electrical power and data communications signals between two systems. The connector has no conductive electrical connection and can operate independently of angular orientation.
- Electrical connections are a challenging aspect of underwater electrical system design, electrical conductive contact being the most common method of implementing an electrical mateable connector. Electrically conductive contact connectors are commonly subject to corrosion and contamination, which can result in a resistive contact point and failure of the connector function. In under water applications water must be excluded from the conductive contacts to prevent short circuits due to the partially conductive nature of water. Wet mating connections are even more challenging since water must be expelled from the conductive contacts during mating and care must be taken to ensure the signal is not applied to the connector while the contacts are exposed to the water before the connection is made to avoid rapid electrolytic corrosion. Connectors that do not rely upon direct conductive contact avoid these issues.
- Additionally, any multi-pin connector must be rotationally aligned to ensure registration of the intended cross connections. This requirement can be problematic, particularly in applications where the connection point is not readily accessible by an operator such as connection by an autonomous system deep in the ocean. Slip ring connectors have been designed to avoid this issue but typically employ conductive brush contacts which are subject to corrosion and contamination issues, suffer continuous mechanical wear in rotating applications and present the challenging requirement of an underwater sealed rotating mechanical joint to exclude water from the brush contacts. An electrically insulated data and power connection which mates independent of angular alignment would be beneficial in many underwater applications.
- Slip rings may be located at the axis of rotation or with an open bore positioning the ring coupling mechanism set out a radial distance from the axis of rotation. This second class of slip ring is defined as “off axis”.
- Various underwater communication systems are known. One of the most common is based on acoustic techniques. A problem with such systems is that they are degraded by noise and interference from a number of sources. They are also subject to multi-path effects and in some environments are virtually unusable. Other underwater communication systems use radio links, e.g. extreme low frequency electromagnetic signals, usually for long-range communications between a surface station and a submerged vessel. These systems typically operate in the far field using physically large electric field coupled antennas and support data rates up to a few bits per second.
- WO01/95529 describes an underwater communications system that uses electromagnetic signal transmission. This system has a transmitter and a receiver, each having a metallic, magnetic coupled aerial surrounded by a waterproof electrically insulating material. Use of electrically insulated magnetic coupled antennas in the system of WO01/95529 provides various advantages. This is because magnetically coupled antennas launch a predominantly magnetic field. A similar arrangement is described in GB2163029. Whilst the communications systems of WO01/95529 and GB2163029 have some technical advantages over more conventional acoustic or radio link systems, the functionality described is limited, and for many practical applications the available bandwidth is highly restrictive, as is distance over which data can be transmitted.
- Magnetic antennas formed by a wire loop, coil or similar arrangements create both magnetic and electromagnetic fields. The magnetic or magneto-inductive field is generally considered to comprise two components of different magnitude that, along. with other factors, attenuate with distance (r), at rates proportional to 1/r2 and 1/r3 respectively. Together they are often termed the near field components. The electromagnetic field has a still different magnitude and, along with other factors, attenuates with distance at a rate proportional to 1/r. It is often termed the far field or propagating component.
- Signals based on electrical and magnetic fields are rapidly attenuated in water due to its partially electrically conductive nature. Seawater is more conductive than fresh water and produces higher attenuation. Propagating radio or electromagnetic waves are a result of an interaction between the electric and magnetic fields. The high conductivity of seawater attenuates the electric field. Water has a magnetic permeability close to that of free space so that a purely magnetic field is relatively unaffected by this medium. However, for propagating electromagnetic waves the energy is continually cycling between magnetic and electric field and this results in attenuation of propagating waves due to conduction losses.
- The attenuation losses, the bandwidth restrictions and the limited distances over which data can be transmitted all pose significant practical problems for underwater communications.
- Existing methods of acoustic communication are inherently restricted in the distance they can achieve at effective data rates. This is particularly true where the signal reaches a receiver by multiple paths (reflections occurring from an irregular sea floor, the sea surface, the coastline, nearby objects and the like, we well as when the sound wave path exhibits discontinuities in its properties (wave wash, bubbles in the water, changes in water density due to salinity variations). Little is known which can lessen these difficulties. The existing art of electromagnetic communication under water fails to recognize measures that can be taken to maximize the distance and/or useful information rate which can be achieved by adapting the devices sourcing and using the information so that more effective signal frequencies can be adopted.
- There is a need for an integrated system that is capable of transmitting electrical power and data across a rotating interface under water.
- According to an aspect of the present invention there is provided a data and power transfer system comprising a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power between one another whilst electrically insulated from one another.
- The data and power transfer system being operable to transmit data and power between the first system unit and second system unit without the need for direct electrically conductive contact means, so that in essence they are electrically insulated from one another, that in environments or uses where implementing a direct electrical contact between two system units could compromise either of the units, data and power transfer is possible which maintaining the integrity of each system unit. By separating the power transfer from data communications functions of the system each of the functions can operate more effectively.
- Preferably, the data and power transfer system comprises a first system unit and a second system unit arranged to form an off axis connector arrangement. In an off axis connector arrangement the connector elements are aligned about a common axis.
- The first connector element and the second connector element may be rotatable relative to one another.
- The data and power transfer system may further comprise an actuating system, connected to one of said first and second system units, wherein the actuating mechanism is operable to interface with the connector element and communication element of the system unit.
- The actuating mechanism may further comprise a controller unit operable to receive data from the interfaced connector unit and a tool unit, such that the controller is operable to control the tool unit in response to data received.
- The tool unit may be a cutting tool.
- There may further be provided a tool system comprising a data and power transfer system which includes a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power between one another whilst electrically insulated from one another and a tool unit whereby the tool unit is interfaced with one of said first system unit and second system unit.
- As the connector elements are electrically insulated from one another and therefore transmit power without the need for direct electrically conductive contact, they are suitable for use in environments where direct electrically conductive contact could be detrimental to the system.
- Preferably, the data and power transfer system comprises a first system unit and a second system unit arranged to form an off axis connector arrangement. In an off axis connector arrangement the connector elements are aligned about a common axis.
- The first connector element and the second connector element may be rotatable relative to one another.
- The tool system may be a rotary tool system.
- The data and power transfer system may be a rotary data and power transfer system.
- The present invention relates to an off axis connector system for the transfer of electronic signals and electrical power between two units without the need for direct electrically conductive contact and independent of connector rotation about the mating axis. Signals are communicated by employing electro-magnetic coupling to remove the need for direct electrical conductive contact.
- An off-axis rotary transformer design suitable for use in the system of the present invention is disclosed in our co-pending application US2010/0102915 “Electrical Connector System” the contents of which are incorporated here by reference.
- A through water radio data communications system suitable for use in the system of the present invention is disclosed in U.S. Pat. No. 7,711,322B2 “Underwater Communications System” the contents of which are incorporated here by reference.
- Data transfer is possible over a greater separation distance than power transfer since a greater loss can be tolerated between the transmitter and receiver transducers as part of a communication link budget than in power transfer.
- Power transfer is achieved through a closely coupled transformer structure at the interface between the primary and secondary halves of the system which may rotate relative to one another.
- The through water radio communication system may be located either side of the power coupling structure since data communications can be accomplished over a greater coupling distance than electrical power transfer.
- This arrangement separates power transfer from data communications functions allowing each to be designed more efficiently as components of a combined system.
- A combined rotary data and power transfer system may be used to power, monitor and control equipment on the secondary side of the system which may rotate relative to the primary.
- Power and data link provision to rotating electrical equipment is a common requirement. By integrating the delivery of electrical power and wireless data transmission in a single system a variety of tasks can be efficiently accomplished.
- In one example embodiment the primary side of the data and power system is fixed to a subsea pipe structure. The secondary side interfaces to a rotary cutting mechanism. Blades are used to cut through a steel pipe which passes through the center of the present rotary data and power transfer system. The purpose of this arrangement is to cut through the lower section of pipe. Electrical power is supplied to the secondary side to power the cutting blades. The cutting blades are equipped with a sensor system which monitors the cutting resistance and this data is transmitted back across the rotating interface by the integrated through water communications system. A control system then varies the cutting speed in response to this measured cutting resistance by transmitting cutting motor control data back across the rotating interface. The cutting system described here is enabled by the rotary data and power transmission system of the present invention.
- Other rotary systems which may incorporate the disclosed rotary data and power transfer system include, but are not limited to; rotary propulsion systems; rotary welding systems; pipe deployment systems; pipe inspection systems; rotary machines; pumps.
- By employing lower frequency radio signaling techniques the system may effectively communicate through the material of the seabed. The rotary cutting system may descend into the seabed to effect a cut below the surface.
- Preferably, the connector employs a circular coil structure surrounded by a flux guiding enclosure that inductively couples energy from a primary winding to a secondary coil arranged at an equal radial distance displaced along the axis of symmetry. The flux guiding enclosure is elongated in the radial plane to reduce the magnetic reluctance of the gap, which is present at the mating surface.
- Multiple independent channels may be implemented by arranging multiple coupling coils at different radial distances in a common plane centered round a common axis. The design can support multiple independent power or data channels independent of connector rotation about the axis of symmetry.
- The electrically insulated nature of the connector assembly lends itself to underwater applications or situations where there is a high probability of liquid contaminants. The connector provides a highly reliable underwater connector function without the limitations imposed by the need to keep a conductive contact dry. The connector can also be “wet mated” entirely submerged under water without the need to devise a complex mechanical assembly to expel water from the contact area.
- Coupling efficiency is improved by minimizing the gap between flux guiding enclosures at the mating surface. This connector design has two distinct classes of application. Firstly as a static connection that can be mated independent of angular orientation so simplifying automated connector mating. Here the mating faces are not required to rotate significantly once the connection has been made so the gap between faces can be minimized by using metal to metal contact or physical contact of protective painted surfaces. A second class of application is as a rotating connector and in this case, mechanical measures must be taken to reduce friction between rotor and stator at the mating surface. In this case a plastic sheet will be attached to the mating surface of each connector half-preferably constructed from an oil impregnated nylon material or alternative material exhibiting low sliding kinetic friction.
- There may further be provided an electrical connector comprising a circular primary coil winding magnetically coupled to a secondary circular coil in a connected mating half through a magnetic flux guiding structure that is elongated either side of the coil in the plane of the coil to form flux coupling wings. The connector structure is rotationally symmetric with an unoccupied area about the center of symmetry. Connector mating is independent of angular orientation about the connector's axis of symmetry
- The primary and secondary coils are substantially aligned about a common axis of rotational symmetry and the cross sectional width of the rotationally symmetric connector structure is less than the inner radius dimension.
- The flux guiding structure is constructed from a material having a relative permeability greater than 10 and comprises flux coupling wings either side of a central coil enclosure. It is composed of at least two sections divided by a linking electrically insulated material. Wing length is greater than 2 times the flux guide material thickness and less than 50 times the gap dimension separating the primary flux guide from the secondary flux guide at the mating surface. A material with low coefficient of sliding kinetic friction is located between the mating surfaces to facilitate relative rotation of the connector halves.
- Multiple independent connection channels are implemented by separate concentric primary coils coupled to corresponding secondary coils
- The connector components allow mating to any other connector component.
- The volume enclosed by the flux guiding structure is filled with electrically insulating material in at least one position along its circumference or continuously filled with insulating material to prevent a shorted loop resulting from the enclosed partially conductive water.
- An optical communications connector or conductive slip ring connector may be positioned at the center of rotational symmetry to provide additional independent functionality.
- The communications element of the system will now be described in detail.
- Accordingly, an object of the present invention is to provide an improved underwater communication systems, and its methods of use, that uses electromagnetic waves for communication and propagation.
- Another object of the present invention an underwater communication system, and its methods of use, for communication and propagation that increases the distance over which information can be transmitted.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation that increases the useful information rate.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation with improved data compression by reducing the transmitted bit rate.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation where the transmitted bit rate is reduced when there are a number of types of information sources.
- Another object of the present invention an underwater communication systems, and its methods of use, for communication and propagation that has a resultant reduced bit rate that allows lower transmitted signal frequencies to be adopted.
- Another object of the present invention an underwater communication system, and its methods of use, for communication and propagation that has lower transmitted signal frequencies to achieve greater distance and/or allow greater rates at a particular distance.
- These and other objects of the present invention are achieved in, an underwater communications system for transmitting electromagnetic and/or magnetic signals to a remote receiver that includes a data input. A digital data compressor compresses data to be transmitted. A modulator modulates compressed data onto a carrier signal. An electrically insulated, magnetic coupled antenna transmits the compressed, modulated signals.
- In another embodiment of the present invention, an underwater communications system includes a receiver that has an electrically insulated, magnetic coupled antenna for receiving a compressed, modulated signal. A demodulator is provided for demodulating the signal to reveal compressed data. A de-compressor de-compresses the data.
- In another embodiment of the present invention, an underwater communications system includes a transmitter for transmitting electromagnetic and/or magnetic signals. A receiver receives signals from the transmitter. At least one intermediate transceiver receives electromagnetic and/or magnetic signals from the transmitter and passes them to the receiver. At least one of the transmitter and receiver is underwater and includes an electrically insulated, magnetic coupled antenna.
- Various aspects of the invention will now be described by way of example only and with reference to the accompanying drawings, of which:
-
FIG. 1A shows an embodiment of a through water communications element suitable for use in a rotary data and power transfer system of the present invention; -
FIG. 1B shows an alternatively embodiment of a through water communications element suitable for use in a rotary data and power transfer system of the present invention; -
FIG. 1C shows a rotary transformer element suitable for use in a rotary data and power transfer system of the present invention; -
FIG. 1D shows an embodiment of a rotary data and power transfer system; -
FIG. 1E shows an embodiment of a rotary pipe cutting system; -
FIG. 1F shows a block diagram of a rotary pipe cutting system; -
FIG. 1G shows another embodiment of a rotary pipe cutting system; -
FIG. 2 shows a single channel connector element mating face; -
FIG. 3 shows a cross sectional view through a pair of rotationally symmetrical mated connector elements; -
FIG. 4 shows a two channel connector element mating face; -
FIG. 5 shows a plan view and corresponding cross sectional view of a connector element installed around a pipe section; -
FIG. 6 shows a plan view and corresponding cross section view of a single section of a first embodiment of a flux guiding enclosure; -
FIG. 7 shows a plan view and corresponding cross section view of a single section of a second embodiment of a flux guiding enclosure; -
FIG. 8A shows a connector element mounted on a conical guiding pin; -
FIG. 8B shows a connector element mounted on guiding pin provided on a submersible vehicle where a guiding pin forms part of the vehicle's nose section; -
FIG. 9 shows dimensions relevant to one embodiment of flux guide design; -
FIG. 10 shows a schematic diagram of one embodiment of a rotary data and power transfer system in use; -
FIG. 11 shows a schematic diagram of another embodiment of a rotary data and power transfer system in use; -
FIG. 12 shows an axial rotary connector positioned at the center of a connector element; -
FIG. 13 shows a plan view and a corresponding cross section view of an embodiment of pair of corresponding connector elements; and -
FIG. 14 is a block diagram of one embodiment of an underwater transceiver suitable for use in the system of the present invention. - In
FIG. 1A there is shown an example embodiment of a throughwater communications element 1A which is in this case has a radio transmission component which in this case is aloop antenna 10 which combines transmit and receive loop antenna windings in a single overall outer jacket. As can be seen,antenna 10 interfaces toradio modem unit 12. InFIG. 1B there is shown an alternative example embodiment of the through water radio communications element 1B which compriseselectrodes cable 3 to form anelectric dipole antenna 11 which interfaces withradio modem 18. InFIG. 1C there is shown arotary transformer element 20 which, in use, interfaces with a similar transformer (not shown) to couple electrical power without conductive contact. -
FIG. 1D illustrates a relative positioning of components arranged for use as one embodiment of an off axis rotary and power transfer system of the present invention. As can be seen, radiomodem transducer loop 10A is arranged adjacentprimary transfer element 20A which, in use, is arranged adjacentsecond transformer element 20B which is in turn adjacent radiomodem transducer loop 10B. - In use, radio
modem transducer loop 10A communicates data, as indicated byarrow 22, with radiomodem transducer loop 10B.Primary transformer element 20A couples electrical power to closely coupledsecondary transformer element 10B. As is shown in this example embodiment, these components are deployed substantially about acommon axis 21 and thesecondary elements primary components Loop antennas FIG. 1A .Transformer elements -
FIG. 1E shows a rotarypipe cutting system 22 according to an embodiment of the present invention. As can be seen, pipe 24 passes through the center of the “off-axis” rotary data andpower transfer system 19.Primary loop antenna 10A communicates data withsecondary loop antenna 10B.Primary transformer element 20A transfers electrical power tosecondary transformer element 20B. The rotary pipecutting system unit 23 is provided with asecondary controller 26 which is electrically connected tosecondary transformer element 20B.Secondary controller 26 controls the cutting motor (not shown) speed which causes cuttingblade 28 to rotate and cut.Secondary controller 26 also monitors the cutting resistance encountered by cuttingblade 28. -
FIG. 1F shows a block diagram of therotary cutting system 22 ofFIG. 1E . In use, primary controller 8 issues a cut start command through primaryradio data modem 10A to secondaryradio data modem 10B which passes on the command tosecondary controller 26. Primary controller 8 also receives data fromradio modem 10A and passes control information toradio modem 10A. Primary controller 8 also controls primarypower transfer element 20A.Primary transformer element 20A transfers electrical power tosecondary transformer element 20B.Secondary controller 26 controls the speed of cuttingmotor 27 which causes cuttingblade 28 to rotate and cut.Secondary controller 26 also monitors, by means of cuttingresistance monitor sensor 29, the cutting resistance encountered by cutting blade.Secondary controller 26 relays data from cutting resistance monitor 29 throughradio modem 10B viaradio modem 10A to primary controller 8. -
FIG. 1G shows a cross section of a second embodiment of rotary pipe cutting system. As can be seen,pipe 6 is inserted into one end of the center of the “off-axis” rotary data andpower transfer system 19.Primary loop antenna 10A, which is supported on cuttingsystem support 5, communicates data withsecondary loop antenna 10B.Primary transformer element 20A transfers electrical power tosecondary transformer element 20B. The rotary pipecutting system unit 23 is provided with asecondary controller 26 which is electrically connected tosecondary transformer element 20B.Secondary controller 26 controls the cuttingmotor 27 speed which causes cuttingblade 28 to rotate and cut.Secondary controller 26 also, though cuttingresistance monitor 29, monitors the cutting resistance encountered by cuttingblade 28. -
FIG. 2 shows themating face 32 of a singlechannel connector part 30. Multiple circular turns form theprimary coil 11 of a transformer system element 11A. A ferrous metalflux guiding structure 34 encloses thecoil 11 and is extended to form coupling “wings” 36 and 38. Thecentral region 39 of thesingle channel connector 30 structure is open and is available to enclose other structures, for example local mechanical structures (not shown), without significantly affectingconnector 30 performance. This class of slip ring connector is often termed “off-axis”. Section A-A is represented in detail inFIG. 11B . Typically, the cross sectional width x of the rotationally symmetric connector structure through section A-A, is less than the inner radius dimension r. -
FIG. 11B shows a cross sectional view through part of a rotationally symmetrical matedconnector 34A shown as section A-A inFIG. 2 that has afirst half 71, wherein theconnector part 30A is of the form shown inFIG. 2 , that has a multiple turn primary coil 11A and asecond half 73, where theconnector part 30B is of similar shape and construction toconnector part 30A in which is located a multiple turn secondary coil 11B. The cross section is symmetrical about a horizontal plane h and this plane of symmetry represents themating surface 32 between the two-connector parts or “halves” 30A, 30B. Bothhalves - Enclosing the primary coil 11A is a first
flux guiding structure 34A and enclosing the secondary coil 11B is a similarly shaped secondflux guiding structure 34B. Each guidingstructure wings Wing structures mating face 32A, 32B ofcoupling region 39 so reducing the magnetic reluctance of the gap at the interface between the first and second connector halves 30A, 30B. The effective relative permeability of the whole magnetic circuit is determined almost entirely by the gap distance and relatively little by the relative permeability of the core material. - For applications that experience regular rotational movement between the connector halves 30A and 30B, bearing
surfaces 40A and 40B are formed from a material with a low coefficient of sliding kinetic friction. The layer of bearing surface material 40 is bonded to thetop connector half 30A whilelayer 40B is bonded to thelower half connector 30B. Nylon impregnated with lubricating oil will be a suitable material for some applications.Layers 40A and 40B ensure a controlled separating distance between the twoflux guiding enclosures - Flux guides, 34B and 34A, of the two, mated
connector parts secondary coils -
Regions flux guiding enclosure areas -
FIG. 4 shows the mating face of a two-channel connector 32C. In this case, two separately wound primary coils 21A and 21C are provided withinflux guiding enclosures interface 44 between twoadjacent wings 36 n and 38 n+1 (not shown) to reduce cross coupling between adjacent channels. -
FIG. 5 shows a plan view of the connector installed around apipe section 50 and a corresponding cross sectional view taken through the plane marked X-Y on the plan view. There is shown astatic component 51 for mating with the underside of a rotatable component 52. Advantageously, the connector ofFIG. 5 can be deployed around an existing structure, as illustrated by thepipe 50. The 50 pipe will have minimal impact on the connector efficiency since theflux guiding enclosures coupling region 25 within theconnector structure 31. -
FIG. 6 shows plan view and cross section view for asingle section 33A of theflux guiding enclosure 34 ofFIGS. 2 and 3 . The material chosen for theflux guiding structure 34 may have significant bulk electrical conductivity so the circular structure must be insulated at some point along its radius to prevent a shorted conductive turn, which would reduce connector efficiency.Flux guide sections 34 are connected using an electrically insulating material (not shown) to avoid a shorted turn.FIG. 6 illustrates a 45degree section 33A but the number of sections selected for a particular installation is a design freedom governed by ease and cost of manufacture. -
FIG. 7 shows plan and cross section for asingle section 33B of theflux guiding enclosure 34 manufactured from straight section materials. The width of theflux guiding wings FIG. 7 ). This feature allows the possibility of constructing the circular structure from a number of linear sections with attendant simplification, and hence cost reduction, of the manufacturing process. -
FIG. 8A shows one half of aconnector 71 mounted on aconical guiding pin 72 for mating with acoupling ring 73. Using aconical guide 72 reduces the alignment accuracy required for mating. Connector mating can tolerate an initial center misalignment by a distance equal to +/− thecoupling ring 73 inner radius since theconical pin section 72 will act to guide theconnector part 71 to meet withconnector part 73 if given freedom of movement perpendicular to the mating travel direction E-F. -
FIG. 8B shows a connector for a submersible vehicle 80. In this case, thefirst component 71 is mounted on the vehicle'snose section 72, which is shaped conically so as to form a connector guiding structure. The submersible vehicle 80 moves along axis B to C, as indicated in the diagram, to make contact with thesecond connector 73. Connector mating can tolerate mis-alignment of the vehicle heading by a distance equal to +/− thecoupling ring conical nose section 72 will act to guide the final approach of the vehicle 80. This arrangement is particularly beneficial since the mating axis is aligned with the primary direction of travel of the vehicle 80. The nature of submerged vehicle dynamics ensures the necessary freedom of guided movement in the plane perpendicular to the direction of travel. - Connector coupling is essentially due to a transformer action. Primary and secondary windings may be arranged with a turns ratio desired by the individual application with the resultant relationship between primary and secondary voltage following the usual transformer design principles.
- Direct contact of the metallic flux guiding enclosures may be acceptable in applications where little relative rotational movement is experienced. In applications with significant angular rotation direct metallic contact is unlikely to be acceptable due to mechanical abrasion and frictional resistance to movement and in these applications a gap must be devised between flux guides. A non-magnetic material such as PTFE (Poly Tetra Fluoro Ethylene) may be used as a spacer, but the effect is similar to the introduction of an air gap into the core of a magnetic induction device. The size of the gap is critical and is related to most of the key performance measures of the device. Coupling efficiency decreases with increasing gap size and in many applications the spacer layer will several millimeters thick.
- The flux guide design features extended “wings” to each side of the winding. These are intended to reduce the reluctance of the magnetic circuit that is much higher than normal in a transformer due to the gap at the mating surface. The larger the wings, the lower the reluctance of the magnetic circuit, minimizing the impact of the gap on performance. However, because most of the flux is concentrated near the windings, there are diminishing returns as the wings are extended.
-
FIG. 9 shows dimensions relevant to flux guide design. The design aim is to reduce the reluctance of the magnetic circuit formed by the primary flux guide, gaps and secondary flux guide. The magnetic reluctance of each of these elements is defined by equation 1. Total reluctance of the magnetic circuit is simply the sum of primary flux guide, inner gap, secondary flux guide and outer gap reluctance. -
- where R=Magnetic reluctance 1/H
- L=flux path length
- A=flux path cross sectional area m2
- μ0=free space permeability N/A2
- μr=material relative permeability
- Without the proposed wing structure, the total magnetic reluctance is dominated by the gap since relative permeability is close to unity while the ferrous core material of the flux guide may have a relative permeability of over 1000. By including the wing structure the cross sectional area of the air gap, or plastic spacer, can be increased by many times hence lowering the reluctance of this circuit element. The gap path length can also be minimized and the small gap length to area ratio can compensate for the low permeability of this section.
Wing length 90 will beneficially be greater than twice theguide material thickness 91 and typically sees little benefit from further extension once the gap reluctance is small compared to the flux guide reluctance. - The magnetic circuit formed by the flux guide enclosures must provide enough space to accommodate the primary winding that provides the magneto-motive force in the system. The secondary flux guide must also accommodate a secondary winding of similar or slightly larger size. The winding cavity must also provide space for insulating material and protective encapsulation for safe and reliable operation at the required voltage and temperature in a conductive seawater environment. The flux guide design dimensions are represented by; 93 the horizontal covering section; 94 the side wall height; 91 the flux guide thickness; 90 the wing width.
- The number of turns in the windings is partly determined by the need to control the magnetizing current and more turns are needed in this case because of the high reluctance in the magnetic circuit due to the gap. The copper loss under no-load conditions will be high as a result and a large winding aperture is required to accommodate large cross section wire to reduce electrical resistance. In
FIG. 9 ,dimensions - Transformer core losses due to eddy currents are proportional to core volume and in the present design the flux guide enclosure acts as a transformer core. However, the volume of the core must be sufficient to avoid magnetic saturation. For mild steel, the saturation flux density is about 1.5 Tesla.
-
FIG. 10 shows an example application of the connector system that transfers electrical power and data from a source system 107 to a connected system 108. The source system 107 includes a data source 103 and anAC power source 101 the outputs of which are coupled into the primary coil of the connector. The connected system 108 is coupled to the secondary connector coil, so that data and/or power can be magnetically coupled from the source system 107 to the other system 108 via the primary and secondary coils. Coupling efficiency reduces as frequency increases because of leakage inductance effects. Eddy current losses increase with frequency so also act to reduce the bandwidth available for data transmission. Data and power transmission can be separated in frequency to allow simultaneous operation of the two functions. Transfer efficiency is more critical for power transfer than for communications applications so a higher frequency will usually be assigned to the communications signal. - Communications modulator 103 takes a data input and generates an analogue or digital modulated carrier signal. A
high pass filter 102 can be used to isolate the modulator 103 from high power AC (Alternating Current)source 101.Subsea connector system 100 couples the AC power signal and communications signal to the connected system 108. The communications signal can be separated from the AC power in the secondary coil by a highpass filter arrangement 105. Data is extracted from the modulated carrier at the communications de-modulator 106. The larger coupled waveform delivers AC power 104 to the connected system. - By way of example an inductive connector system of the type described here with an internal diameter of 1.8 m and external diameter of 2 m is supplied with a 240 V, 4.2 A r.m.s. alternating current, 1 kW power. Primary to secondary coil turns ratio is 1:1 delivering a 240 V r.m.s. supply to the secondary coupled system. An oil impregnated nylon spacer fills the 2 mm gap between the connector halves to provide low friction rotational movement. The primary and secondary coils are constructed from 100 turns of 1211 B6 AWG enameled copper wire occupying a cross
sectional area 30 mm wide by 20 mm deep. The flux guide is manufactured from 5 mm thick 316 grade stainless steel. -
FIG. 11 shows an alternative arrangement that couples power and data through separate channels in a single multi-channel connector structure. Communications modulator 113 insystem 118 takes a data input and generates an analogue or digital modulated carrier signal which is coupled throughconnector 110 channel A. AC (Alternating Current)source 111 couples throughconnector 110 channel B to the connected system 119. Data is extracted from the modulated carrier at the communications de-modulator 116. The larger coupled waveform deliversAC power 114 to the connected system. -
FIG. 121 shows an on-axis rotary connector 121 positioned at the center of thepresent connector structure 120. The area around the rotational axis of the present design is not occupied by the present off-axis, open bore connector structure so is available for additional power or data connectors. For example, this connector could be an optical rotary connector as described in CA1166493A1 or a conductive slip ring as described in EP1766761A2 capable of supporting data communications or power transfer. -
FIG. 13 shows a design for axially registering two mating connectors. The mating parts are annular and mounted in the annulus of the guide structure. Each part has abacking plate 131 that acts as an end stop to movement along the axis of rotation. Mounted on eachbacking plate 131 are raised crenulations orteeth 130 that interlock one connector component to another so as to prevent rotational movement and axial misalignment. Preferably, the mating parts on each connector part are identical to provide a hermaphrodite connector mating compatibility. To restrict, movement perpendicular to the axis of rotational symmetry, aninner ring structure 132 is provided. This abuts the inner face of the backing plate, without impeding engagement of the crenulations orteeth 130. - No-load losses in this design are large and result from two features; the gap and the solid core. The main contributions to loss are eddy currents in the solid core and primary winding loss due to the magnetizing current. Eddy current loss depends on frequency, flux density, core resistance and core shape. To reduce eddy current loss for a given material and magnetic field it is necessary to make the current path long while making the flux path short and in this design the core material must be as thin as possible, while avoiding core saturation. Winding loss depends on the resistance and inductance of the primary winding. Inductance achieved per unit length of winding is low, due to the presence of the gap, therefore a high magnetizing current flows and power is dissipated in the resistance of the winding. This leads to a selection of a large cross section wire for the primary winding limited by the practical volume, mass and cost of the assembled coil.
- In each of the above embodiments, the communication systems may use a known
communications transceiver 140 that has atransmitter 142, areceiver 144 and aprocessor 146 which can be connected to an analogue or digital data interface (not shown), as illustrated inFIG. 14 . Both the transmitter andreceiver antenna - Electrically insulated magnetic coupled antennas may be used in the communication systems shown in the embodiments of the present invention because in an underwater environment they are more efficient than electrically coupled antennas. Underwater attenuation is largely due to the effect of conduction on the electric field. Since electrically coupled antennas produce a higher electric field component, in water in the near field, the radiated signal experiences higher attenuation. In comparison a magnetic loop antenna produces strong magneto-inductive field terms in addition to the electromagnetic propagating field. The magneto-inductive terms are greater than the propagating field close to the transmitting antenna and provide an additional means for coupling a signal between two antennas. For both shorter and greater distances, magnetic coupled antennas are more efficient under water than electrically coupled. In applications where long distance transmission is required, the magnetic antenna should preferably be used at lowest achievable signal frequency. This is because signal attenuation in water increases as a function of increasing frequency. Hence, minimizing the carrier frequency where possible allows the transmission distance to be maximized. In practice, the lowest achievable signal frequency will be a function of the desired bit rate and the required distance of transmission.
- Any of the above embodiments wherein an underwater communications system is provided for transmitting data to a remote receiver may include a data input; a data compressor for compressing data that is to be transmitted; a modulator for modulating the compressed data onto a carrier signal and an electrically insulated, magnetic coupled antenna for transmitting the compressed, modulated signals. It will be appreciated that the words remote and local used herein are relative terms used merely to differentiate device sites for the purpose of description, and do not necessarily imply any particular distances.
- By compressing the data, prior to transmission, the occupied transmission bandwidth can be reduced. This allows use of a lower carrier frequency, which leads to lower attenuation. This in turn allows communication over greater transmission distances, thereby significantly alleviating the difficulty of communication through water. Digital representation of audio and or video, data compression and transmission at the lowest practicable frequency are therefore particularly advantageous in the subsea environment and represents a key innovation. While data compression is usually highly desirable, it will be appreciated that it is not essential to the operation of different embodiments of the present invention.
- Whether or not compressed, data in some applications of the present invention can be encrypted before transmission and decrypted after receiving, when desired for reasons of security. Although a low carrier frequency is usually optimal to maximize distance, there may be occasions when a higher frequency is satisfactory but more desirable in order to reduce the distance over which an unwanted receiving party can detect the signal, as in deliberately covert operation of a communication system.
- In any of the above embodiments of the present invention, it will understood that error correction techniques may be applied to the information transferred. Error correction techniques slightly increase the amount of data which must pass over the communication links themselves, but can be advantageous in allowing operation at greater distances which otherwise would have resulted in unreliable transfer of information. Error correction can be of the types commonly and generically known as forward error correction (FEC) and automatic repeat request (ARQ). For somewhat random errors which are well spaced and do not occur in long runs, FEC is preferable; and beneficially the effectiveness of FEC may be increased by first applying an interleaving process, as known in the art.
- In addition, it will be understood that in any of the above embodiments, an acoustic transmitter and receiver system may be used as the means of providing wireless data communications across the rotating interface.
- Alternatively, an optical transmitter and receiver system may be used as the means of providing wireless data communications across the rotating interface.
- The communications module of the present invention may include a receiver that has an electrically insulated, magnetic coupled antenna for receiving electromagnetic signals. The module is preferably operable to present received text/data and/or video/images on the module display. The transmitter and the receiver may share a single electrically insulated, magnetic coupled antenna.
- It will be understood that the system of the present invention can be configured to change the carrier frequency to optimize the information communication rate for the transmission range and conditions encountered. In another embodiment, the system of the present invention can be configured to establish a connection; commence transmission at a first frequency; once communication is established, vary the frequency and select the frequency based on the received signal strength.
- The magnetic coupled antenna used with certain embodiments of the present invention can be based on loops or solenoids. The solenoid may be formed around a high magnetic permeability material.
- Near field subsea magneto-inductive communications links can support much higher carrier frequencies than possible in the far field. In turn, communication in the near field allows a significantly higher signal bandwidth than is available for far field transmissions. While the near field components are relatively greatest close to an antenna, their rate of decline with distance is faster than that of the far field component When the antenna is magnetic, the important advantage of lower loss is gained over conventional electromagnetic antennas of the types commonly used in free space. In addition the relative initial strength of the magnetic field in comparison with the electromagnetic field is considerably greater still.
- It will be appreciated that in the embodiments of the present invention detailed, the communications element may include an electric dipole arrangement used as a transmit or receive transducer to couple the electrical signal into or out of the water. In transmit, a Voltage is developed between two spaced electrodes in direct conductive contact with the water. In receive an amplifier monitors the potential developed across two spaced electrodes in direct conductive contact with the water.
- In the embodiments of the present invention detailed above, at least one of the transmitter and receiver includes means for varying the signal gain. This is advantageous for systems in which one or both antennas may be subjected to wave wash, where the antenna is periodically partially or wholly immersed in water. By providing means for varying the gain, performance can be maintained even when one or more of the antennas is subject to wave wash.
- It will be further understood that communications system elements of the above embodiments may include a device for transmitting electromagnetic signals and means for transmitting acoustic signals and/or optical signals. In use, the system of this embodiment can be controlled such that the optimal route for communication is utilized be it electromagnetic, acoustic or optical. Under different or changing conditions, one or more of these methods may provide superior performance at different times.
- For reception of weak signals, such as at greater distances, the reduction of received interfering noise will be important. This may be accomplished in the system of the present invention by filtering the received signal to the minimum bandwidth possible, consistent with the bandwidth of the wanted signal, before making decisions on the received digital signal states. Alternatively, or in addition, digital bit states may be represented in transmission by known and readily distinguishable sequences of sub-bits transmitted at a higher rate, and correlation techniques adopted to determine the likely presence of each sequence and hence the value of each received bit. Such techniques will be familiar to those skilled in the techniques of communication in other fields.
- A further technique, often advantageous where effects such as multi-path propagation, fading and dispersion exist between transmitter and receiver, is that of spread spectrum, in which transmission power is deliberately distributed over a wide bandwidth and correlation methods are used in receivers. As will be known to communication practitioners, the spread spectrum technique is enhanced if the known RAKE method is also adopted in receivers.
- Furthermore, while carrier-based techniques with impressed modulation have been described, un-modulated methods without a carrier also may be adopted, wherein a representation of the baseband data is used directly to energize the antenna.
- In all of the above detailed embodiments of communications elements of the present invention, the operating signal carrier frequency will depend on the particular application. The carrier frequency is selected as a function of the data transfer rate and the distance over which transmission has to occur. For example, for short-range communications where a high data rate is required, a relatively high frequency would be used, for example above 1 MHz. In contrast for long-range communications where attenuation losses are likely to be a problem, relatively low frequencies would be used, for example below 1 MHz, and in many cases below 100 kHz.
- Another technique that may be applied in any of above detailed embodiments is the use of an adaptive carrier frequency based on range of operation. In this implementation, the carrier frequency employed to convey information is chosen to maximize the information rate possible for the given signal path. The most significant influence on the optimum frequency to choose will be the range between the communicating systems. One implementation uses multiple fixed frequencies that are known to all communicating stations. To first establish a connection, transmission commences on the lowest frequency. Once communication is established, the systems may then adapt the frequency of operation up and down to maximize data rate. This may be performed based on the received signal strength. An alternative scheme employs the lowest frequency at all times to maintain timing and to communicate the main frequency being chosen to carry information.
- The electromagnetic communication system which may be included in embodiments of the invention as detailed here within, may be combined with acoustic communication and/or with optical communication to provide enhanced capability. Whereas acoustic communications offer long-range capability they are limited in terms of robust operation in noisy environments and can only offer a limited bandwidth. The range of operation is limited with electromagnetic communications but it is immune to acoustic noise and has a wide bandwidth capability. By way of example a system of the present invention can include an acoustic modem and an underwater electromagnetic communications system as described above. The two systems can be combined in a processing unit to select the communications path based on appropriate criteria. These criteria may include factors such as measured error rates, range of operation, measured signal strength or required bandwidth. If very high bandwidth is required when the ends of the communication link are close enough to allow optical communication, this method similarly may be brought into operation in preference to, or in addition to, electromagnetic communication.
- Directional antennas may be adopted to concentrate and maximize the power which a transmitter sends in the direction of a receiver and, by the principle of reciprocity, which a directional receive antenna can intercept. In as much as directional properties can be improved, communication range will be increased. If transmit and/or receive antennas are steered towards each other, preferably with dynamic real-time adjustment, then the optimum signal can be provided at all times. Diversity techniques employing multiple antennas at receive and/or transmit sites may be adopted, and intelligent switching adopted to use the most advantageous signal path at any time.
- The magnetic and electromagnetic field from a transmitter (and correspondingly a receiver) may be increased by using latest magnetic core materials of the highest possible permeability in the antenna in order to increase magnetic flux for given antenna dimensions.
- While magnetic coupled antennas may be used, electromagnetic antennas of plain wire similar to those of conventional radio methods, and electric antennas which predominantly excite and detect an electric field, can also be deployed; and they may be deployed in combination to achieve the strongest aggregate received signal.
- Those familiar with transformer and communications techniques will understand that the foregoing is but one possible example of the principle according to this invention. In particular, to achieve some or most of the advantages of this invention, practical implementations may not necessarily be exactly as exemplified and can include variations within the scope of the invention. For example, a similar system description could apply where a higher permeability ferrite material is selected for the flux guiding enclosure other than that specified in the foregoing examples. It will be further understood that whilst the embodiments of the present invention are described with reference to the rotary data and power transfer system arranged to operate a rotary cutting mechanism, the system may operate any actuating means required including, but not limited to, a camera system, measuring system, sensor system, pump system or welding system.
Claims (11)
1. A data and power transfer system comprising:
a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power; and
a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power,
wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power whilst electrically insulated from one another.
2. A data and power transfer system as claimed in claim 1 wherein the first system unit and a second system unit are arranged to form an off axis connector arrangement.
3. A data power transfer system as claimed in claim 1 wherein the first connector element and the second connector element are rotatable relative to one another.
4. A data and power transfer system as claimed in claim 1 further comprising an actuating system, connected to one of said first and second system units, wherein the actuating mechanism is operable to interface with the connector element and communication element of the system unit.
5. A data and power transfer system as claimed in claim 4 wherein the actuating mechanism further comprises a controller unit operable to receive data from the interfaced connector unit; and a tool unit, such that the controller is operable to control the tool unit in response to data received.
6. A data and power transfer system as claimed in claim 5 wherein the tool unit is a cutting tool.
7. A tool system comprising:
a data and power transfer system which includes a first system unit which includes a first communication element operable to transfer communication signals and a first connector element operable to transfer electrical power and a second system unit which includes a second communication element operable to transfer communication signals and a second connector element operable to transfer electrical power wherein the first communication element and second communication element are operable to transfer data between one another and the first connector element and second connector element are operable to transfer electrical power whilst electrically insulated from one another; and
a tool unit,
whereby the tool unit is interfaced with one of said first system unit and second system unit.
8. A tool system as claimed in claim 7 wherein the data and power transfer system comprises a first system unit and a second system unit arranged to form an off axis connector arrangement.
9. A tool system as claimed in claim 7 wherein the first connector element and the second connector element may be rotatable relative to one another.
10. A tool system as claimed in claim 7 wherein the tool system is a rotary tool system.
11. A tool system as claimed in claim 7 wherein the data and power transfer system is a rotary data and power transfer system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/228,595 US20120007442A1 (en) | 2009-02-06 | 2011-09-09 | Rotary data and power transfer system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/366,856 US8350653B2 (en) | 2008-10-29 | 2009-02-06 | Electrical connector system |
US13/228,595 US20120007442A1 (en) | 2009-02-06 | 2011-09-09 | Rotary data and power transfer system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/366,856 Continuation-In-Part US8350653B2 (en) | 2008-10-29 | 2009-02-06 | Electrical connector system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120007442A1 true US20120007442A1 (en) | 2012-01-12 |
Family
ID=45438083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/228,595 Abandoned US20120007442A1 (en) | 2009-02-06 | 2011-09-09 | Rotary data and power transfer system |
Country Status (1)
Country | Link |
---|---|
US (1) | US20120007442A1 (en) |
Cited By (405)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103203520A (en) * | 2012-10-16 | 2013-07-17 | 华东交通大学 | Arc stabilizer for underwater wet welding |
US20140327394A1 (en) * | 2011-10-17 | 2014-11-06 | Conductix-Wampfler Gmbh | Apparatus for inductively transmitting electrical energy |
US9113063B2 (en) | 2013-09-20 | 2015-08-18 | Robert Bosch Gmbh | Moving camera with off-axis slip ring assembly |
US20150249360A1 (en) * | 2012-09-05 | 2015-09-03 | Renesas Electronics Corporation | Non-contact charging device, and non-contact power supply system using same |
WO2015177759A1 (en) * | 2014-05-23 | 2015-11-26 | I.M.A. Industria Macchine Automatiche S.P.A. | Working unit equipped with a device for contactless electricity transfer and method for contactless electricity transfer in a working unit |
CN105871416A (en) * | 2016-04-18 | 2016-08-17 | 国网山东省电力公司郓城县供电公司 | Device of using mains supply line for transmitting alarm low-frequency signals |
US20170047787A1 (en) * | 2014-05-13 | 2017-02-16 | Mitsubishi Electric Engineering Company, Limited | Movable portion transmission system using wireless power transmission |
US20170167250A1 (en) * | 2014-03-06 | 2017-06-15 | Halliburton Energy Services, Inc. | Downhole power and data transfer using resonators |
CN108768491A (en) * | 2018-07-03 | 2018-11-06 | 成都博士信智能科技发展有限公司 | Submersible communication system and method |
US20190000530A1 (en) * | 2017-06-28 | 2019-01-03 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
US10463384B2 (en) | 2006-01-31 | 2019-11-05 | Ethicon Llc | Stapling assembly |
US10463372B2 (en) | 2010-09-30 | 2019-11-05 | Ethicon Llc | Staple cartridge comprising multiple regions |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10485547B2 (en) | 2004-07-28 | 2019-11-26 | Ethicon Llc | Surgical staple cartridges |
US10485546B2 (en) | 2011-05-27 | 2019-11-26 | Ethicon Llc | Robotically-driven surgical assembly |
US10485539B2 (en) | 2006-01-31 | 2019-11-26 | Ethicon Llc | Surgical instrument with firing lockout |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10517590B2 (en) | 2007-01-10 | 2019-12-31 | Ethicon Llc | Powered surgical instrument having a transmission system |
US10517596B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Articulatable surgical instruments with articulation stroke amplification features |
US10524787B2 (en) | 2015-03-06 | 2020-01-07 | Ethicon Llc | Powered surgical instrument with parameter-based firing rate |
US10524790B2 (en) | 2011-05-27 | 2020-01-07 | Ethicon Llc | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10531887B2 (en) | 2015-03-06 | 2020-01-14 | Ethicon Llc | Powered surgical instrument including speed display |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
US10542974B2 (en) | 2008-02-14 | 2020-01-28 | Ethicon Llc | Surgical instrument including a control system |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10548600B2 (en) | 2010-09-30 | 2020-02-04 | Ethicon Llc | Multiple thickness implantable layers for surgical stapling devices |
US10561422B2 (en) | 2014-04-16 | 2020-02-18 | Ethicon Llc | Fastener cartridge comprising deployable tissue engaging members |
US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
US10575868B2 (en) | 2013-03-01 | 2020-03-03 | Ethicon Llc | Surgical instrument with coupler assembly |
US10588625B2 (en) | 2016-02-09 | 2020-03-17 | Ethicon Llc | Articulatable surgical instruments with off-axis firing beam arrangements |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US10588626B2 (en) | 2014-03-26 | 2020-03-17 | Ethicon Llc | Surgical instrument displaying subsequent step of use |
US10588633B2 (en) | 2017-06-28 | 2020-03-17 | Ethicon Llc | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
US10595882B2 (en) | 2017-06-20 | 2020-03-24 | Ethicon Llc | Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10603039B2 (en) | 2015-09-30 | 2020-03-31 | Ethicon Llc | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10617420B2 (en) | 2011-05-27 | 2020-04-14 | Ethicon Llc | Surgical system comprising drive systems |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10617416B2 (en) | 2013-03-14 | 2020-04-14 | Ethicon Llc | Control systems for surgical instruments |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10617417B2 (en) | 2014-11-06 | 2020-04-14 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
EP2678958B1 (en) | 2011-02-21 | 2020-04-15 | Wisub AS | Underwater connector arrangement |
US10624861B2 (en) | 2010-09-30 | 2020-04-21 | Ethicon Llc | Tissue thickness compensator configured to redistribute compressive forces |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10639036B2 (en) | 2008-02-14 | 2020-05-05 | Ethicon Llc | Robotically-controlled motorized surgical cutting and fastening instrument |
US10639115B2 (en) | 2012-06-28 | 2020-05-05 | Ethicon Llc | Surgical end effectors having angled tissue-contacting surfaces |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10660640B2 (en) | 2008-02-14 | 2020-05-26 | Ethicon Llc | Motorized surgical cutting and fastening instrument |
US10667808B2 (en) | 2012-03-28 | 2020-06-02 | Ethicon Llc | Staple cartridge comprising an absorbable adjunct |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US10675028B2 (en) | 2006-01-31 | 2020-06-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US10682134B2 (en) | 2017-12-21 | 2020-06-16 | Ethicon Llc | Continuous use self-propelled stapling instrument |
US10682142B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical stapling apparatus including an articulation system |
US10682141B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical device including a control system |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10687812B2 (en) | 2012-06-28 | 2020-06-23 | Ethicon Llc | Surgical instrument system including replaceable end effectors |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10695063B2 (en) | 2012-02-13 | 2020-06-30 | Ethicon Llc | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US10695062B2 (en) | 2010-10-01 | 2020-06-30 | Ethicon Llc | Surgical instrument including a retractable firing member |
US10695058B2 (en) | 2014-12-18 | 2020-06-30 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10702267B2 (en) | 2007-03-15 | 2020-07-07 | Ethicon Llc | Surgical stapling instrument having a releasable buttress material |
US10702266B2 (en) | 2013-04-16 | 2020-07-07 | Ethicon Llc | Surgical instrument system |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10736630B2 (en) | 2014-10-13 | 2020-08-11 | Ethicon Llc | Staple cartridge |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10736628B2 (en) | 2008-09-23 | 2020-08-11 | Ethicon Llc | Motor-driven surgical cutting instrument |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10743849B2 (en) | 2006-01-31 | 2020-08-18 | Ethicon Llc | Stapling system including an articulation system |
US10743873B2 (en) | 2014-12-18 | 2020-08-18 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10743851B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Interchangeable tools for surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10743870B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Surgical stapling apparatus with interlockable firing system |
US10743877B2 (en) | 2010-09-30 | 2020-08-18 | Ethicon Llc | Surgical stapler with floating anvil |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10751053B2 (en) | 2014-09-26 | 2020-08-25 | Ethicon Llc | Fastener cartridges for applying expandable fastener lines |
US10751076B2 (en) | 2009-12-24 | 2020-08-25 | Ethicon Llc | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10765425B2 (en) | 2008-09-23 | 2020-09-08 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10772625B2 (en) | 2015-03-06 | 2020-09-15 | Ethicon Llc | Signal and power communication system positioned on a rotatable shaft |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10780539B2 (en) | 2011-05-27 | 2020-09-22 | Ethicon Llc | Stapling instrument for use with a robotic system |
US10779824B2 (en) | 2017-06-28 | 2020-09-22 | Ethicon Llc | Surgical instrument comprising an articulation system lockable by a closure system |
US10806449B2 (en) | 2005-11-09 | 2020-10-20 | Ethicon Llc | End effectors for surgical staplers |
US10806448B2 (en) | 2014-12-18 | 2020-10-20 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10828032B2 (en) | 2013-08-23 | 2020-11-10 | Ethicon Llc | End effector detection systems for surgical instruments |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10842489B2 (en) | 2005-08-31 | 2020-11-24 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10863986B2 (en) | 2015-09-23 | 2020-12-15 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10893867B2 (en) | 2013-03-14 | 2021-01-19 | Ethicon Llc | Drive train control arrangements for modular surgical instruments |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10905418B2 (en) | 2014-10-16 | 2021-02-02 | Ethicon Llc | Staple cartridge comprising a tissue thickness compensator |
US10905423B2 (en) | 2014-09-05 | 2021-02-02 | Ethicon Llc | Smart cartridge wake up operation and data retention |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10918386B2 (en) | 2007-01-10 | 2021-02-16 | Ethicon Llc | Interlock and surgical instrument including same |
US10918380B2 (en) | 2006-01-31 | 2021-02-16 | Ethicon Llc | Surgical instrument system including a control system |
US10932775B2 (en) | 2012-06-28 | 2021-03-02 | Ethicon Llc | Firing system lockout arrangements for surgical instruments |
US10932778B2 (en) | 2008-10-10 | 2021-03-02 | Ethicon Llc | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10945728B2 (en) | 2014-12-18 | 2021-03-16 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10959725B2 (en) | 2012-06-15 | 2021-03-30 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10987102B2 (en) | 2010-09-30 | 2021-04-27 | Ethicon Llc | Tissue thickness compensator comprising a plurality of layers |
US10993717B2 (en) | 2006-01-31 | 2021-05-04 | Ethicon Llc | Surgical stapling system comprising a control system |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11006951B2 (en) | 2007-01-10 | 2021-05-18 | Ethicon Llc | Surgical instrument with wireless communication between control unit and sensor transponders |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11007004B2 (en) | 2012-06-28 | 2021-05-18 | Ethicon Llc | Powered multi-axial articulable electrosurgical device with external dissection features |
US11013511B2 (en) | 2007-06-22 | 2021-05-25 | Ethicon Llc | Surgical stapling instrument with an articulatable end effector |
US11020115B2 (en) | 2014-02-12 | 2021-06-01 | Cilag Gmbh International | Deliverable surgical instrument |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11026678B2 (en) | 2015-09-23 | 2021-06-08 | Cilag Gmbh International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US11026684B2 (en) | 2016-04-15 | 2021-06-08 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11051813B2 (en) | 2006-01-31 | 2021-07-06 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11051810B2 (en) | 2016-04-15 | 2021-07-06 | Cilag Gmbh International | Modular surgical instrument with configurable operating mode |
US11058422B2 (en) | 2015-12-30 | 2021-07-13 | Cilag Gmbh International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11071545B2 (en) | 2014-09-05 | 2021-07-27 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11076929B2 (en) | 2015-09-25 | 2021-08-03 | Cilag Gmbh International | Implantable adjunct systems for determining adjunct skew |
US11083454B2 (en) | 2015-12-30 | 2021-08-10 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11083453B2 (en) | 2014-12-18 | 2021-08-10 | Cilag Gmbh International | Surgical stapling system including a flexible firing actuator and lateral buckling supports |
US11083452B2 (en) | 2010-09-30 | 2021-08-10 | Cilag Gmbh International | Staple cartridge including a tissue thickness compensator |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11090045B2 (en) | 2005-08-31 | 2021-08-17 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11109859B2 (en) | 2015-03-06 | 2021-09-07 | Cilag Gmbh International | Surgical instrument comprising a lockable battery housing |
US11129613B2 (en) | 2015-12-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments with separable motors and motor control circuits |
US11129615B2 (en) | 2009-02-05 | 2021-09-28 | Cilag Gmbh International | Surgical stapling system |
US11133106B2 (en) | 2013-08-23 | 2021-09-28 | Cilag Gmbh International | Surgical instrument assembly comprising a retraction assembly |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11134938B2 (en) | 2007-06-04 | 2021-10-05 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11135352B2 (en) | 2004-07-28 | 2021-10-05 | Cilag Gmbh International | End effector including a gradually releasable medical adjunct |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11147554B2 (en) | 2016-04-18 | 2021-10-19 | Cilag Gmbh International | Surgical instrument system comprising a magnetic lockout |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US11154296B2 (en) | 2010-09-30 | 2021-10-26 | Cilag Gmbh International | Anvil layer attached to a proximal end of an end effector |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11180037B2 (en) * | 2013-09-30 | 2021-11-23 | Waymo Llc | Contactless electrical coupling for a rotatable LIDAR device |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11191545B2 (en) | 2016-04-15 | 2021-12-07 | Cilag Gmbh International | Staple formation detection mechanisms |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US11202633B2 (en) | 2014-09-26 | 2021-12-21 | Cilag Gmbh International | Surgical stapling buttresses and adjunct materials |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224423B2 (en) | 2015-03-06 | 2022-01-18 | Cilag Gmbh International | Smart sensors with local signal processing |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11224428B2 (en) | 2016-12-21 | 2022-01-18 | Cilag Gmbh International | Surgical stapling systems |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11241230B2 (en) | 2012-06-28 | 2022-02-08 | Cilag Gmbh International | Clip applier tool for use with a robotic surgical system |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11259799B2 (en) | 2014-03-26 | 2022-03-01 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US11266409B2 (en) | 2014-04-16 | 2022-03-08 | Cilag Gmbh International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11272938B2 (en) | 2006-06-27 | 2022-03-15 | Cilag Gmbh International | Surgical instrument including dedicated firing and retraction assemblies |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11291449B2 (en) | 2009-12-24 | 2022-04-05 | Cilag Gmbh International | Surgical cutting instrument that analyzes tissue thickness |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US11311292B2 (en) | 2016-04-15 | 2022-04-26 | Cilag Gmbh International | Surgical instrument with detection sensors |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US11317913B2 (en) | 2016-12-21 | 2022-05-03 | Cilag Gmbh International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11344303B2 (en) | 2016-02-12 | 2022-05-31 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11350928B2 (en) | 2016-04-18 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising a tissue thickness lockout and speed control system |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US11382627B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Surgical stapling assembly comprising a firing member including a lateral extension |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US11406380B2 (en) | 2008-09-23 | 2022-08-09 | Cilag Gmbh International | Motorized surgical instrument |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11439470B2 (en) | 2011-05-27 | 2022-09-13 | Cilag Gmbh International | Robotically-controlled surgical instrument with selectively articulatable end effector |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11457918B2 (en) | 2014-10-29 | 2022-10-04 | Cilag Gmbh International | Cartridge assemblies for surgical staplers |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
US11464513B2 (en) | 2012-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11478247B2 (en) | 2010-07-30 | 2022-10-25 | Cilag Gmbh International | Tissue acquisition arrangements and methods for surgical stapling devices |
US11484311B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11497488B2 (en) | 2014-03-26 | 2022-11-15 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US11504116B2 (en) | 2011-04-29 | 2022-11-22 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11523823B2 (en) | 2016-02-09 | 2022-12-13 | Cilag Gmbh International | Surgical instruments with non-symmetrical articulation arrangements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529138B2 (en) | 2013-03-01 | 2022-12-20 | Cilag Gmbh International | Powered surgical instrument including a rotary drive screw |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11571231B2 (en) | 2006-09-29 | 2023-02-07 | Cilag Gmbh International | Staple cartridge having a driver for driving multiple staples |
US11571215B2 (en) | 2010-09-30 | 2023-02-07 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11622763B2 (en) | 2013-04-16 | 2023-04-11 | Cilag Gmbh International | Stapling assembly comprising a shiftable drive |
US11622766B2 (en) | 2012-06-28 | 2023-04-11 | Cilag Gmbh International | Empty clip cartridge lockout |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11638582B2 (en) | 2020-07-28 | 2023-05-02 | Cilag Gmbh International | Surgical instruments with torsion spine drive arrangements |
US11642125B2 (en) | 2016-04-15 | 2023-05-09 | Cilag Gmbh International | Robotic surgical system including a user interface and a control circuit |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11678877B2 (en) | 2014-12-18 | 2023-06-20 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11717294B2 (en) | 2014-04-16 | 2023-08-08 | Cilag Gmbh International | End effector arrangements comprising indicators |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11757490B2 (en) | 2018-08-02 | 2023-09-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V | Data transmission from a user terminal to another apparatus |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11766260B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Methods of stapling tissue |
US11766259B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11793522B2 (en) | 2015-09-30 | 2023-10-24 | Cilag Gmbh International | Staple cartridge assembly including a compressible adjunct |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11826132B2 (en) | 2015-03-06 | 2023-11-28 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11826048B2 (en) | 2017-06-28 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11839352B2 (en) | 2007-01-11 | 2023-12-12 | Cilag Gmbh International | Surgical stapling device with an end effector |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11883026B2 (en) | 2014-04-16 | 2024-01-30 | Cilag Gmbh International | Fastener cartridge assemblies and staple retainer cover arrangements |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11883020B2 (en) | 2006-01-31 | 2024-01-30 | Cilag Gmbh International | Surgical instrument having a feedback system |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11918220B2 (en) | 2012-03-28 | 2024-03-05 | Cilag Gmbh International | Tissue thickness compensator comprising tissue ingrowth features |
US11918212B2 (en) | 2015-03-31 | 2024-03-05 | Cilag Gmbh International | Surgical instrument with selectively disengageable drive systems |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11944338B2 (en) | 2015-03-06 | 2024-04-02 | Cilag Gmbh International | Multiple level thresholds to modify operation of powered surgical instruments |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US12004745B2 (en) | 2016-12-21 | 2024-06-11 | Cilag Gmbh International | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US12096167B2 (en) | 2019-01-30 | 2024-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Bidirectional configuration of sensor nodes with mobile phone with no extension |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US12171507B2 (en) | 2016-08-16 | 2024-12-24 | Cilag Gmbh International | Surgical tool with manual control of end effector jaws |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US12245764B2 (en) | 2016-12-21 | 2025-03-11 | Cilag Gmbh International | Shaft assembly comprising a lockout |
US12262888B2 (en) | 2018-08-20 | 2025-04-01 | Cilag Gmbh International | Surgical instruments with progressive jaw closure arrangements |
US12274442B2 (en) | 2016-12-21 | 2025-04-15 | Cilag Gmbh International | Surgical staple cartridge alignment features |
US12285166B2 (en) | 2014-03-26 | 2025-04-29 | Cilag Gmbh International | Feedback algorithms for manual bailout systems for surgical instruments |
US12294422B2 (en) | 2019-05-10 | 2025-05-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Efficient communication to configure sensor nodes |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747894A (en) * | 1994-03-11 | 1998-05-05 | Kabushiki Kaisha Yaskawa Denki | Factory automation connector and work pallet |
US5770936A (en) * | 1992-06-18 | 1998-06-23 | Kabushiki Kaisha Yaskawa Denki | Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same |
US5814900A (en) * | 1991-07-30 | 1998-09-29 | Ulrich Schwan | Device for combined transmission of energy and electric signals |
US6268785B1 (en) * | 1998-12-22 | 2001-07-31 | Raytheon Company | Apparatus and method for transferring energy across a connectorless interface |
US6512437B2 (en) * | 1997-07-03 | 2003-01-28 | The Furukawa Electric Co., Ltd. | Isolation transformer |
US20070035883A1 (en) * | 2005-08-15 | 2007-02-15 | General Electric Company | Methods and apparatus for communicating signals between portions of an apparatus in relative movement to one another |
-
2011
- 2011-09-09 US US13/228,595 patent/US20120007442A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814900A (en) * | 1991-07-30 | 1998-09-29 | Ulrich Schwan | Device for combined transmission of energy and electric signals |
US5770936A (en) * | 1992-06-18 | 1998-06-23 | Kabushiki Kaisha Yaskawa Denki | Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same |
US5798622A (en) * | 1992-06-18 | 1998-08-25 | Kabushiki Kaisha Yaskawa Denki | Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same |
US5747894A (en) * | 1994-03-11 | 1998-05-05 | Kabushiki Kaisha Yaskawa Denki | Factory automation connector and work pallet |
US6512437B2 (en) * | 1997-07-03 | 2003-01-28 | The Furukawa Electric Co., Ltd. | Isolation transformer |
US6268785B1 (en) * | 1998-12-22 | 2001-07-31 | Raytheon Company | Apparatus and method for transferring energy across a connectorless interface |
US20070035883A1 (en) * | 2005-08-15 | 2007-02-15 | General Electric Company | Methods and apparatus for communicating signals between portions of an apparatus in relative movement to one another |
Cited By (845)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10485547B2 (en) | 2004-07-28 | 2019-11-26 | Ethicon Llc | Surgical staple cartridges |
US11963679B2 (en) | 2004-07-28 | 2024-04-23 | Cilag Gmbh International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US10687817B2 (en) | 2004-07-28 | 2020-06-23 | Ethicon Llc | Stapling device comprising a firing member lockout |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US10716563B2 (en) | 2004-07-28 | 2020-07-21 | Ethicon Llc | Stapling system comprising an instrument assembly including a lockout |
US11083456B2 (en) | 2004-07-28 | 2021-08-10 | Cilag Gmbh International | Articulating surgical instrument incorporating a two-piece firing mechanism |
US12011165B2 (en) | 2004-07-28 | 2024-06-18 | Cilag Gmbh International | Surgical stapling instrument comprising replaceable staple cartridge |
US11684365B2 (en) | 2004-07-28 | 2023-06-27 | Cilag Gmbh International | Replaceable staple cartridges for surgical instruments |
US12029423B2 (en) | 2004-07-28 | 2024-07-09 | Cilag Gmbh International | Surgical stapling instrument comprising a staple cartridge |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11116502B2 (en) | 2004-07-28 | 2021-09-14 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece firing mechanism |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US11135352B2 (en) | 2004-07-28 | 2021-10-05 | Cilag Gmbh International | End effector including a gradually releasable medical adjunct |
US11882987B2 (en) | 2004-07-28 | 2024-01-30 | Cilag Gmbh International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US10568629B2 (en) | 2004-07-28 | 2020-02-25 | Ethicon Llc | Articulating surgical stapling instrument |
US10799240B2 (en) | 2004-07-28 | 2020-10-13 | Ethicon Llc | Surgical instrument comprising a staple firing lockout |
US11812960B2 (en) | 2004-07-28 | 2023-11-14 | Cilag Gmbh International | Method of segmenting the operation of a surgical stapling instrument |
US11179153B2 (en) | 2005-08-31 | 2021-11-23 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US11730474B2 (en) | 2005-08-31 | 2023-08-22 | Cilag Gmbh International | Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement |
US11134947B2 (en) | 2005-08-31 | 2021-10-05 | Cilag Gmbh International | Fastener cartridge assembly comprising a camming sled with variable cam arrangements |
US11272928B2 (en) | 2005-08-31 | 2022-03-15 | Cilag GmbH Intemational | Staple cartridges for forming staples having differing formed staple heights |
US11576673B2 (en) | 2005-08-31 | 2023-02-14 | Cilag Gmbh International | Stapling assembly for forming staples to different heights |
US11793512B2 (en) | 2005-08-31 | 2023-10-24 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US10842488B2 (en) | 2005-08-31 | 2020-11-24 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484311B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US10842489B2 (en) | 2005-08-31 | 2020-11-24 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US10932774B2 (en) | 2005-08-31 | 2021-03-02 | Ethicon Llc | Surgical end effector for forming staples to different heights |
US11839375B2 (en) | 2005-08-31 | 2023-12-12 | Cilag Gmbh International | Fastener cartridge assembly comprising an anvil and different staple heights |
US11399828B2 (en) | 2005-08-31 | 2022-08-02 | Cilag Gmbh International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11172927B2 (en) | 2005-08-31 | 2021-11-16 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US11090045B2 (en) | 2005-08-31 | 2021-08-17 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11771425B2 (en) | 2005-08-31 | 2023-10-03 | Cilag Gmbh International | Stapling assembly for forming staples to different formed heights |
US10806449B2 (en) | 2005-11-09 | 2020-10-20 | Ethicon Llc | End effectors for surgical staplers |
US10993713B2 (en) | 2005-11-09 | 2021-05-04 | Ethicon Llc | Surgical instruments |
US11793511B2 (en) | 2005-11-09 | 2023-10-24 | Cilag Gmbh International | Surgical instruments |
US11648024B2 (en) | 2006-01-31 | 2023-05-16 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with position feedback |
US11648008B2 (en) | 2006-01-31 | 2023-05-16 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US11051813B2 (en) | 2006-01-31 | 2021-07-06 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11224454B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10893853B2 (en) | 2006-01-31 | 2021-01-19 | Ethicon Llc | Stapling assembly including motor drive systems |
US11883020B2 (en) | 2006-01-31 | 2024-01-30 | Cilag Gmbh International | Surgical instrument having a feedback system |
US10918380B2 (en) | 2006-01-31 | 2021-02-16 | Ethicon Llc | Surgical instrument system including a control system |
US11890008B2 (en) | 2006-01-31 | 2024-02-06 | Cilag Gmbh International | Surgical instrument with firing lockout |
US11890029B2 (en) | 2006-01-31 | 2024-02-06 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument |
US11246616B2 (en) | 2006-01-31 | 2022-02-15 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11103269B2 (en) | 2006-01-31 | 2021-08-31 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11364046B2 (en) | 2006-01-31 | 2022-06-21 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10952728B2 (en) | 2006-01-31 | 2021-03-23 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US10653435B2 (en) | 2006-01-31 | 2020-05-19 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10959722B2 (en) | 2006-01-31 | 2021-03-30 | Ethicon Llc | Surgical instrument for deploying fasteners by way of rotational motion |
US11350916B2 (en) | 2006-01-31 | 2022-06-07 | Cilag Gmbh International | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US10743849B2 (en) | 2006-01-31 | 2020-08-18 | Ethicon Llc | Stapling system including an articulation system |
US11660110B2 (en) | 2006-01-31 | 2023-05-30 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11166717B2 (en) | 2006-01-31 | 2021-11-09 | Cilag Gmbh International | Surgical instrument with firing lockout |
US10806479B2 (en) | 2006-01-31 | 2020-10-20 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11612393B2 (en) | 2006-01-31 | 2023-03-28 | Cilag Gmbh International | Robotically-controlled end effector |
US10993717B2 (en) | 2006-01-31 | 2021-05-04 | Ethicon Llc | Surgical stapling system comprising a control system |
US10463384B2 (en) | 2006-01-31 | 2019-11-05 | Ethicon Llc | Stapling assembly |
US10485539B2 (en) | 2006-01-31 | 2019-11-26 | Ethicon Llc | Surgical instrument with firing lockout |
US11801051B2 (en) | 2006-01-31 | 2023-10-31 | Cilag Gmbh International | Accessing data stored in a memory of a surgical instrument |
US11058420B2 (en) | 2006-01-31 | 2021-07-13 | Cilag Gmbh International | Surgical stapling apparatus comprising a lockout system |
US11000275B2 (en) | 2006-01-31 | 2021-05-11 | Ethicon Llc | Surgical instrument |
US10675028B2 (en) | 2006-01-31 | 2020-06-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US10709468B2 (en) | 2006-01-31 | 2020-07-14 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument |
US12161329B2 (en) | 2006-01-31 | 2024-12-10 | Cilag Gmbh International | Surgical systems comprising a control circuit including a timer |
US11020113B2 (en) | 2006-01-31 | 2021-06-01 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US11944299B2 (en) | 2006-01-31 | 2024-04-02 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US12171508B2 (en) | 2006-03-23 | 2024-12-24 | Cilag Gmbh International | Robotically-controlled surgical instrument with selectively articulatable end effector |
US11272938B2 (en) | 2006-06-27 | 2022-03-15 | Cilag Gmbh International | Surgical instrument including dedicated firing and retraction assemblies |
US11571231B2 (en) | 2006-09-29 | 2023-02-07 | Cilag Gmbh International | Staple cartridge having a driver for driving multiple staples |
US11622785B2 (en) | 2006-09-29 | 2023-04-11 | Cilag Gmbh International | Surgical staples having attached drivers and stapling instruments for deploying the same |
US12178434B2 (en) | 2006-10-03 | 2024-12-31 | Cilag Gmbh International | Surgical stapling system including control circuit to monitor clamping pressure |
US11382626B2 (en) | 2006-10-03 | 2022-07-12 | Cilag Gmbh International | Surgical system including a knife bar supported for rotational and axial travel |
US11877748B2 (en) | 2006-10-03 | 2024-01-23 | Cilag Gmbh International | Robotically-driven surgical instrument with E-beam driver |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US12082806B2 (en) | 2007-01-10 | 2024-09-10 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and sensor transponders |
US11006951B2 (en) | 2007-01-10 | 2021-05-18 | Ethicon Llc | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11771426B2 (en) | 2007-01-10 | 2023-10-03 | Cilag Gmbh International | Surgical instrument with wireless communication |
US10952727B2 (en) | 2007-01-10 | 2021-03-23 | Ethicon Llc | Surgical instrument for assessing the state of a staple cartridge |
US11350929B2 (en) | 2007-01-10 | 2022-06-07 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and sensor transponders |
US11812961B2 (en) | 2007-01-10 | 2023-11-14 | Cilag Gmbh International | Surgical instrument including a motor control system |
US10517590B2 (en) | 2007-01-10 | 2019-12-31 | Ethicon Llc | Powered surgical instrument having a transmission system |
US11134943B2 (en) | 2007-01-10 | 2021-10-05 | Cilag Gmbh International | Powered surgical instrument including a control unit and sensor |
US11666332B2 (en) | 2007-01-10 | 2023-06-06 | Cilag Gmbh International | Surgical instrument comprising a control circuit configured to adjust the operation of a motor |
US10945729B2 (en) | 2007-01-10 | 2021-03-16 | Ethicon Llc | Interlock and surgical instrument including same |
US11844521B2 (en) | 2007-01-10 | 2023-12-19 | Cilag Gmbh International | Surgical instrument for use with a robotic system |
US11000277B2 (en) | 2007-01-10 | 2021-05-11 | Ethicon Llc | Surgical instrument with wireless communication between control unit and remote sensor |
US11849947B2 (en) | 2007-01-10 | 2023-12-26 | Cilag Gmbh International | Surgical system including a control circuit and a passively-powered transponder |
US10918386B2 (en) | 2007-01-10 | 2021-02-16 | Ethicon Llc | Interlock and surgical instrument including same |
US11937814B2 (en) | 2007-01-10 | 2024-03-26 | Cilag Gmbh International | Surgical instrument for use with a robotic system |
US11064998B2 (en) | 2007-01-10 | 2021-07-20 | Cilag Gmbh International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11166720B2 (en) | 2007-01-10 | 2021-11-09 | Cilag Gmbh International | Surgical instrument including a control module for assessing an end effector |
US11931032B2 (en) | 2007-01-10 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US12004743B2 (en) | 2007-01-10 | 2024-06-11 | Cilag Gmbh International | Staple cartridge comprising a sloped wall |
US11918211B2 (en) | 2007-01-10 | 2024-03-05 | Cilag Gmbh International | Surgical stapling instrument for use with a robotic system |
US11839352B2 (en) | 2007-01-11 | 2023-12-12 | Cilag Gmbh International | Surgical stapling device with an end effector |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US11337693B2 (en) | 2007-03-15 | 2022-05-24 | Cilag Gmbh International | Surgical stapling instrument having a releasable buttress material |
US10702267B2 (en) | 2007-03-15 | 2020-07-07 | Ethicon Llc | Surgical stapling instrument having a releasable buttress material |
US11134938B2 (en) | 2007-06-04 | 2021-10-05 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11911028B2 (en) | 2007-06-04 | 2024-02-27 | Cilag Gmbh International | Surgical instruments for use with a robotic surgical system |
US11147549B2 (en) | 2007-06-04 | 2021-10-19 | Cilag Gmbh International | Stapling instrument including a firing system and a closure system |
US11559302B2 (en) | 2007-06-04 | 2023-01-24 | Cilag Gmbh International | Surgical instrument including a firing member movable at different speeds |
US11857181B2 (en) | 2007-06-04 | 2024-01-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11992208B2 (en) | 2007-06-04 | 2024-05-28 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US12035906B2 (en) | 2007-06-04 | 2024-07-16 | Cilag Gmbh International | Surgical instrument including a handle system for advancing a cutting member |
US12023024B2 (en) | 2007-06-04 | 2024-07-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US11154298B2 (en) | 2007-06-04 | 2021-10-26 | Cilag Gmbh International | Stapling system for use with a robotic surgical system |
US11648006B2 (en) | 2007-06-04 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US11013511B2 (en) | 2007-06-22 | 2021-05-25 | Ethicon Llc | Surgical stapling instrument with an articulatable end effector |
US11998200B2 (en) | 2007-06-22 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument with an articulatable end effector |
US12023025B2 (en) | 2007-06-29 | 2024-07-02 | Cilag Gmbh International | Surgical stapling instrument having a releasable buttress material |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US11925346B2 (en) | 2007-06-29 | 2024-03-12 | Cilag Gmbh International | Surgical staple cartridge including tissue supporting surfaces |
US10905427B2 (en) | 2008-02-14 | 2021-02-02 | Ethicon Llc | Surgical System |
US10898194B2 (en) | 2008-02-14 | 2021-01-26 | Ethicon Llc | Detachable motor powered surgical instrument |
US10888329B2 (en) | 2008-02-14 | 2021-01-12 | Ethicon Llc | Detachable motor powered surgical instrument |
US11612395B2 (en) | 2008-02-14 | 2023-03-28 | Cilag Gmbh International | Surgical system including a control system having an RFID tag reader |
US10743870B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Surgical stapling apparatus with interlockable firing system |
US10874396B2 (en) | 2008-02-14 | 2020-12-29 | Ethicon Llc | Stapling instrument for use with a surgical robot |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US10682142B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical stapling apparatus including an articulation system |
US10765432B2 (en) | 2008-02-14 | 2020-09-08 | Ethicon Llc | Surgical device including a control system |
US10743851B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Interchangeable tools for surgical instruments |
US11801047B2 (en) | 2008-02-14 | 2023-10-31 | Cilag Gmbh International | Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor |
US10888330B2 (en) | 2008-02-14 | 2021-01-12 | Ethicon Llc | Surgical system |
US11446034B2 (en) | 2008-02-14 | 2022-09-20 | Cilag Gmbh International | Surgical stapling assembly comprising first and second actuation systems configured to perform different functions |
US11571212B2 (en) | 2008-02-14 | 2023-02-07 | Cilag Gmbh International | Surgical stapling system including an impedance sensor |
US11464514B2 (en) | 2008-02-14 | 2022-10-11 | Cilag Gmbh International | Motorized surgical stapling system including a sensing array |
US11484307B2 (en) | 2008-02-14 | 2022-11-01 | Cilag Gmbh International | Loading unit coupleable to a surgical stapling system |
US10722232B2 (en) | 2008-02-14 | 2020-07-28 | Ethicon Llc | Surgical instrument for use with different cartridges |
US10682141B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical device including a control system |
US10660640B2 (en) | 2008-02-14 | 2020-05-26 | Ethicon Llc | Motorized surgical cutting and fastening instrument |
US10925605B2 (en) | 2008-02-14 | 2021-02-23 | Ethicon Llc | Surgical stapling system |
US10716568B2 (en) | 2008-02-14 | 2020-07-21 | Ethicon Llc | Surgical stapling apparatus with control features operable with one hand |
US12213671B2 (en) | 2008-02-14 | 2025-02-04 | Cilag Gmbh International | Motorized system having a plurality of power sources |
US10542974B2 (en) | 2008-02-14 | 2020-01-28 | Ethicon Llc | Surgical instrument including a control system |
US10806450B2 (en) | 2008-02-14 | 2020-10-20 | Ethicon Llc | Surgical cutting and fastening instrument having a control system |
US11638583B2 (en) | 2008-02-14 | 2023-05-02 | Cilag Gmbh International | Motorized surgical system having a plurality of power sources |
US10898195B2 (en) | 2008-02-14 | 2021-01-26 | Ethicon Llc | Detachable motor powered surgical instrument |
US10905426B2 (en) | 2008-02-14 | 2021-02-02 | Ethicon Llc | Detachable motor powered surgical instrument |
US11998206B2 (en) | 2008-02-14 | 2024-06-04 | Cilag Gmbh International | Detachable motor powered surgical instrument |
US10639036B2 (en) | 2008-02-14 | 2020-05-05 | Ethicon Llc | Robotically-controlled motorized surgical cutting and fastening instrument |
US11717285B2 (en) | 2008-02-14 | 2023-08-08 | Cilag Gmbh International | Surgical cutting and fastening instrument having RF electrodes |
US11998194B2 (en) | 2008-02-15 | 2024-06-04 | Cilag Gmbh International | Surgical stapling assembly comprising an adjunct applicator |
US11154297B2 (en) | 2008-02-15 | 2021-10-26 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US11812954B2 (en) | 2008-09-23 | 2023-11-14 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US11517304B2 (en) | 2008-09-23 | 2022-12-06 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US11617575B2 (en) | 2008-09-23 | 2023-04-04 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US11684361B2 (en) | 2008-09-23 | 2023-06-27 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US11871923B2 (en) | 2008-09-23 | 2024-01-16 | Cilag Gmbh International | Motorized surgical instrument |
US11045189B2 (en) | 2008-09-23 | 2021-06-29 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US10898184B2 (en) | 2008-09-23 | 2021-01-26 | Ethicon Llc | Motor-driven surgical cutting instrument |
US10765425B2 (en) | 2008-09-23 | 2020-09-08 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US12029415B2 (en) | 2008-09-23 | 2024-07-09 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US11617576B2 (en) | 2008-09-23 | 2023-04-04 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US10980535B2 (en) | 2008-09-23 | 2021-04-20 | Ethicon Llc | Motorized surgical instrument with an end effector |
US11103241B2 (en) | 2008-09-23 | 2021-08-31 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US10736628B2 (en) | 2008-09-23 | 2020-08-11 | Ethicon Llc | Motor-driven surgical cutting instrument |
US11406380B2 (en) | 2008-09-23 | 2022-08-09 | Cilag Gmbh International | Motorized surgical instrument |
US11730477B2 (en) | 2008-10-10 | 2023-08-22 | Cilag Gmbh International | Powered surgical system with manually retractable firing system |
US11583279B2 (en) | 2008-10-10 | 2023-02-21 | Cilag Gmbh International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US11793521B2 (en) | 2008-10-10 | 2023-10-24 | Cilag Gmbh International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US10932778B2 (en) | 2008-10-10 | 2021-03-02 | Ethicon Llc | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US11129615B2 (en) | 2009-02-05 | 2021-09-28 | Cilag Gmbh International | Surgical stapling system |
US12207835B2 (en) | 2009-12-24 | 2025-01-28 | Cilag Gmbh International | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US10751076B2 (en) | 2009-12-24 | 2020-08-25 | Ethicon Llc | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US11291449B2 (en) | 2009-12-24 | 2022-04-05 | Cilag Gmbh International | Surgical cutting instrument that analyzes tissue thickness |
US11478247B2 (en) | 2010-07-30 | 2022-10-25 | Cilag Gmbh International | Tissue acquisition arrangements and methods for surgical stapling devices |
US11559496B2 (en) | 2010-09-30 | 2023-01-24 | Cilag Gmbh International | Tissue thickness compensator configured to redistribute compressive forces |
US11583277B2 (en) | 2010-09-30 | 2023-02-21 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11911027B2 (en) | 2010-09-30 | 2024-02-27 | Cilag Gmbh International | Adhesive film laminate |
US10888328B2 (en) | 2010-09-30 | 2021-01-12 | Ethicon Llc | Surgical end effector |
US11957795B2 (en) | 2010-09-30 | 2024-04-16 | Cilag Gmbh International | Tissue thickness compensator configured to redistribute compressive forces |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US10869669B2 (en) | 2010-09-30 | 2020-12-22 | Ethicon Llc | Surgical instrument assembly |
US12178432B2 (en) | 2010-09-30 | 2024-12-31 | Cilag Gmbh International | Tissue thickness compensator comprising laterally offset layers |
US11154296B2 (en) | 2010-09-30 | 2021-10-26 | Cilag Gmbh International | Anvil layer attached to a proximal end of an end effector |
US10898193B2 (en) | 2010-09-30 | 2021-01-26 | Ethicon Llc | End effector for use with a surgical instrument |
US11737754B2 (en) | 2010-09-30 | 2023-08-29 | Cilag Gmbh International | Surgical stapler with floating anvil |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US10548600B2 (en) | 2010-09-30 | 2020-02-04 | Ethicon Llc | Multiple thickness implantable layers for surgical stapling devices |
US11602340B2 (en) | 2010-09-30 | 2023-03-14 | Cilag Gmbh International | Adhesive film laminate |
US10624861B2 (en) | 2010-09-30 | 2020-04-21 | Ethicon Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US10835251B2 (en) | 2010-09-30 | 2020-11-17 | Ethicon Llc | Surgical instrument assembly including an end effector configurable in different positions |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US10463372B2 (en) | 2010-09-30 | 2019-11-05 | Ethicon Llc | Staple cartridge comprising multiple regions |
US11850310B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge including an adjunct |
US11883025B2 (en) | 2010-09-30 | 2024-01-30 | Cilag Gmbh International | Tissue thickness compensator comprising a plurality of layers |
US10987102B2 (en) | 2010-09-30 | 2021-04-27 | Ethicon Llc | Tissue thickness compensator comprising a plurality of layers |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11395651B2 (en) | 2010-09-30 | 2022-07-26 | Cilag Gmbh International | Adhesive film laminate |
US11944292B2 (en) | 2010-09-30 | 2024-04-02 | Cilag Gmbh International | Anvil layer attached to a proximal end of an end effector |
US11857187B2 (en) | 2010-09-30 | 2024-01-02 | Cilag Gmbh International | Tissue thickness compensator comprising controlled release and expansion |
US11571215B2 (en) | 2010-09-30 | 2023-02-07 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11672536B2 (en) | 2010-09-30 | 2023-06-13 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11083452B2 (en) | 2010-09-30 | 2021-08-10 | Cilag Gmbh International | Staple cartridge including a tissue thickness compensator |
US11540824B2 (en) | 2010-09-30 | 2023-01-03 | Cilag Gmbh International | Tissue thickness compensator |
US10743877B2 (en) | 2010-09-30 | 2020-08-18 | Ethicon Llc | Surgical stapler with floating anvil |
US11684360B2 (en) | 2010-09-30 | 2023-06-27 | Cilag Gmbh International | Staple cartridge comprising a variable thickness compressible portion |
US11406377B2 (en) | 2010-09-30 | 2022-08-09 | Cilag Gmbh International | Adhesive film laminate |
US11529142B2 (en) | 2010-10-01 | 2022-12-20 | Cilag Gmbh International | Surgical instrument having a power control circuit |
US10695062B2 (en) | 2010-10-01 | 2020-06-30 | Ethicon Llc | Surgical instrument including a retractable firing member |
EP2678958B1 (en) | 2011-02-21 | 2020-04-15 | Wisub AS | Underwater connector arrangement |
US11504116B2 (en) | 2011-04-29 | 2022-11-22 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11129616B2 (en) | 2011-05-27 | 2021-09-28 | Cilag Gmbh International | Surgical stapling system |
US10736634B2 (en) | 2011-05-27 | 2020-08-11 | Ethicon Llc | Robotically-driven surgical instrument including a drive system |
US12256930B2 (en) | 2011-05-27 | 2025-03-25 | Cilag Gmbh International | Robotically-driven surgical instrument with E-beam driver |
US12239316B2 (en) | 2011-05-27 | 2025-03-04 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US11266410B2 (en) | 2011-05-27 | 2022-03-08 | Cilag Gmbh International | Surgical device for use with a robotic system |
US12290261B2 (en) | 2011-05-27 | 2025-05-06 | Cilag Gmbh International | Robotically-driven surgical instrument with E-beam driver |
US11974747B2 (en) | 2011-05-27 | 2024-05-07 | Cilag Gmbh International | Surgical stapling instruments with rotatable staple deployment arrangements |
US11612394B2 (en) | 2011-05-27 | 2023-03-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US12059154B2 (en) | 2011-05-27 | 2024-08-13 | Cilag Gmbh International | Surgical instrument with detachable motor control unit |
US10780539B2 (en) | 2011-05-27 | 2020-09-22 | Ethicon Llc | Stapling instrument for use with a robotic system |
US11918208B2 (en) | 2011-05-27 | 2024-03-05 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US10980534B2 (en) | 2011-05-27 | 2021-04-20 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10813641B2 (en) | 2011-05-27 | 2020-10-27 | Ethicon Llc | Robotically-driven surgical instrument |
US10524790B2 (en) | 2011-05-27 | 2020-01-07 | Ethicon Llc | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10617420B2 (en) | 2011-05-27 | 2020-04-14 | Ethicon Llc | Surgical system comprising drive systems |
US11439470B2 (en) | 2011-05-27 | 2022-09-13 | Cilag Gmbh International | Robotically-controlled surgical instrument with selectively articulatable end effector |
US11583278B2 (en) | 2011-05-27 | 2023-02-21 | Cilag Gmbh International | Surgical stapling system having multi-direction articulation |
US10485546B2 (en) | 2011-05-27 | 2019-11-26 | Ethicon Llc | Robotically-driven surgical assembly |
US20140327394A1 (en) * | 2011-10-17 | 2014-11-06 | Conductix-Wampfler Gmbh | Apparatus for inductively transmitting electrical energy |
US9543781B2 (en) * | 2011-10-17 | 2017-01-10 | Conductix-Wampfler Gmbh | Apparatus for inductively transmitting electrical energy |
US10695063B2 (en) | 2012-02-13 | 2020-06-30 | Ethicon Llc | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US12121234B2 (en) | 2012-03-28 | 2024-10-22 | Cilag Gmbh International | Staple cartridge assembly comprising a compensator |
US11406378B2 (en) | 2012-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a compressible tissue thickness compensator |
US10667808B2 (en) | 2012-03-28 | 2020-06-02 | Ethicon Llc | Staple cartridge comprising an absorbable adjunct |
US11918220B2 (en) | 2012-03-28 | 2024-03-05 | Cilag Gmbh International | Tissue thickness compensator comprising tissue ingrowth features |
US11793509B2 (en) | 2012-03-28 | 2023-10-24 | Cilag Gmbh International | Staple cartridge including an implantable layer |
US11707273B2 (en) | 2012-06-15 | 2023-07-25 | Cilag Gmbh International | Articulatable surgical instrument comprising a firing drive |
US10959725B2 (en) | 2012-06-15 | 2021-03-30 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10687812B2 (en) | 2012-06-28 | 2020-06-23 | Ethicon Llc | Surgical instrument system including replaceable end effectors |
US10639115B2 (en) | 2012-06-28 | 2020-05-05 | Ethicon Llc | Surgical end effectors having angled tissue-contacting surfaces |
US11806013B2 (en) | 2012-06-28 | 2023-11-07 | Cilag Gmbh International | Firing system arrangements for surgical instruments |
US11141156B2 (en) | 2012-06-28 | 2021-10-12 | Cilag Gmbh International | Surgical stapling assembly comprising flexible output shaft |
US11141155B2 (en) | 2012-06-28 | 2021-10-12 | Cilag Gmbh International | Drive system for surgical tool |
US11779420B2 (en) | 2012-06-28 | 2023-10-10 | Cilag Gmbh International | Robotic surgical attachments having manually-actuated retraction assemblies |
US11007004B2 (en) | 2012-06-28 | 2021-05-18 | Ethicon Llc | Powered multi-axial articulable electrosurgical device with external dissection features |
US11039837B2 (en) | 2012-06-28 | 2021-06-22 | Cilag Gmbh International | Firing system lockout arrangements for surgical instruments |
US11622766B2 (en) | 2012-06-28 | 2023-04-11 | Cilag Gmbh International | Empty clip cartridge lockout |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US11241230B2 (en) | 2012-06-28 | 2022-02-08 | Cilag Gmbh International | Clip applier tool for use with a robotic surgical system |
US11857189B2 (en) | 2012-06-28 | 2024-01-02 | Cilag Gmbh International | Surgical instrument including first and second articulation joints |
US11534162B2 (en) | 2012-06-28 | 2022-12-27 | Cilag GmbH Inlernational | Robotically powered surgical device with manually-actuatable reversing system |
US10932775B2 (en) | 2012-06-28 | 2021-03-02 | Ethicon Llc | Firing system lockout arrangements for surgical instruments |
US11154299B2 (en) | 2012-06-28 | 2021-10-26 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US11058423B2 (en) | 2012-06-28 | 2021-07-13 | Cilag Gmbh International | Stapling system including first and second closure systems for use with a surgical robot |
US11083457B2 (en) | 2012-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11918213B2 (en) | 2012-06-28 | 2024-03-05 | Cilag Gmbh International | Surgical stapler including couplers for attaching a shaft to an end effector |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
US10874391B2 (en) | 2012-06-28 | 2020-12-29 | Ethicon Llc | Surgical instrument system including replaceable end effectors |
US11602346B2 (en) | 2012-06-28 | 2023-03-14 | Cilag Gmbh International | Robotically powered surgical device with manually-actuatable reversing system |
US11510671B2 (en) | 2012-06-28 | 2022-11-29 | Cilag Gmbh International | Firing system lockout arrangements for surgical instruments |
US11464513B2 (en) | 2012-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11540829B2 (en) | 2012-06-28 | 2023-01-03 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11109860B2 (en) | 2012-06-28 | 2021-09-07 | Cilag Gmbh International | Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems |
US11373755B2 (en) | 2012-08-23 | 2022-06-28 | Cilag Gmbh International | Surgical device drive system including a ratchet mechanism |
US10404107B2 (en) | 2012-09-05 | 2019-09-03 | Renesas Electronics Corporation | Non-contact charging device, and non-contact power supply system using same |
US9991731B2 (en) * | 2012-09-05 | 2018-06-05 | Renesas Electronics Corporation | Non-contact charging device with wireless communication antenna coil for data transfer and electric power transmitting antenna coil for transfer of electric power, and non-contact power supply system using same |
US20150249360A1 (en) * | 2012-09-05 | 2015-09-03 | Renesas Electronics Corporation | Non-contact charging device, and non-contact power supply system using same |
CN103203520A (en) * | 2012-10-16 | 2013-07-17 | 华东交通大学 | Arc stabilizer for underwater wet welding |
US11529138B2 (en) | 2013-03-01 | 2022-12-20 | Cilag Gmbh International | Powered surgical instrument including a rotary drive screw |
US11246618B2 (en) | 2013-03-01 | 2022-02-15 | Cilag Gmbh International | Surgical instrument soft stop |
US10575868B2 (en) | 2013-03-01 | 2020-03-03 | Ethicon Llc | Surgical instrument with coupler assembly |
US11957345B2 (en) | 2013-03-01 | 2024-04-16 | Cilag Gmbh International | Articulatable surgical instruments with conductive pathways for signal communication |
US11992214B2 (en) | 2013-03-14 | 2024-05-28 | Cilag Gmbh International | Control systems for surgical instruments |
US10617416B2 (en) | 2013-03-14 | 2020-04-14 | Ethicon Llc | Control systems for surgical instruments |
US10893867B2 (en) | 2013-03-14 | 2021-01-19 | Ethicon Llc | Drive train control arrangements for modular surgical instruments |
US11266406B2 (en) | 2013-03-14 | 2022-03-08 | Cilag Gmbh International | Control systems for surgical instruments |
US11395652B2 (en) | 2013-04-16 | 2022-07-26 | Cilag Gmbh International | Powered surgical stapler |
US11406381B2 (en) | 2013-04-16 | 2022-08-09 | Cilag Gmbh International | Powered surgical stapler |
US11638581B2 (en) | 2013-04-16 | 2023-05-02 | Cilag Gmbh International | Powered surgical stapler |
US12178429B2 (en) | 2013-04-16 | 2024-12-31 | Cilag Gmbh International | Surgical instruments having modular end effector selectively coupleable to housing assembly |
US11564679B2 (en) | 2013-04-16 | 2023-01-31 | Cilag Gmbh International | Powered surgical stapler |
US11633183B2 (en) | 2013-04-16 | 2023-04-25 | Cilag International GmbH | Stapling assembly comprising a retraction drive |
US10888318B2 (en) | 2013-04-16 | 2021-01-12 | Ethicon Llc | Powered surgical stapler |
US12161320B2 (en) | 2013-04-16 | 2024-12-10 | Cilag Gmbh International | Powered surgical stapler |
US11622763B2 (en) | 2013-04-16 | 2023-04-11 | Cilag Gmbh International | Stapling assembly comprising a shiftable drive |
US10702266B2 (en) | 2013-04-16 | 2020-07-07 | Ethicon Llc | Surgical instrument system |
US11690615B2 (en) | 2013-04-16 | 2023-07-04 | Cilag Gmbh International | Surgical system including an electric motor and a surgical instrument |
US10869665B2 (en) | 2013-08-23 | 2020-12-22 | Ethicon Llc | Surgical instrument system including a control system |
US11376001B2 (en) | 2013-08-23 | 2022-07-05 | Cilag Gmbh International | Surgical stapling device with rotary multi-turn retraction mechanism |
US11134940B2 (en) | 2013-08-23 | 2021-10-05 | Cilag Gmbh International | Surgical instrument including a variable speed firing member |
US11701110B2 (en) | 2013-08-23 | 2023-07-18 | Cilag Gmbh International | Surgical instrument including a drive assembly movable in a non-motorized mode of operation |
US11133106B2 (en) | 2013-08-23 | 2021-09-28 | Cilag Gmbh International | Surgical instrument assembly comprising a retraction assembly |
US11918209B2 (en) | 2013-08-23 | 2024-03-05 | Cilag Gmbh International | Torque optimization for surgical instruments |
US10898190B2 (en) | 2013-08-23 | 2021-01-26 | Ethicon Llc | Secondary battery arrangements for powered surgical instruments |
US12053176B2 (en) | 2013-08-23 | 2024-08-06 | Cilag Gmbh International | End effector detention systems for surgical instruments |
US11000274B2 (en) | 2013-08-23 | 2021-05-11 | Ethicon Llc | Powered surgical instrument |
US10828032B2 (en) | 2013-08-23 | 2020-11-10 | Ethicon Llc | End effector detection systems for surgical instruments |
US11109858B2 (en) | 2013-08-23 | 2021-09-07 | Cilag Gmbh International | Surgical instrument including a display which displays the position of a firing element |
US11026680B2 (en) | 2013-08-23 | 2021-06-08 | Cilag Gmbh International | Surgical instrument configured to operate in different states |
US11504119B2 (en) | 2013-08-23 | 2022-11-22 | Cilag Gmbh International | Surgical instrument including an electronic firing lockout |
US11389160B2 (en) | 2013-08-23 | 2022-07-19 | Cilag Gmbh International | Surgical system comprising a display |
US9113063B2 (en) | 2013-09-20 | 2015-08-18 | Robert Bosch Gmbh | Moving camera with off-axis slip ring assembly |
US11180037B2 (en) * | 2013-09-30 | 2021-11-23 | Waymo Llc | Contactless electrical coupling for a rotatable LIDAR device |
US11780339B2 (en) * | 2013-09-30 | 2023-10-10 | Waymo Llc | Contactless electrical coupling for a rotatable LIDAR device |
US12187141B2 (en) | 2013-09-30 | 2025-01-07 | Waymo Llc | Contactless electrical coupling for a rotatable LIDAR device |
US20220032791A1 (en) * | 2013-09-30 | 2022-02-03 | Waymo Llc | Contactless Electrical Coupling for a Rotatable LIDAR Device |
US11020115B2 (en) | 2014-02-12 | 2021-06-01 | Cilag Gmbh International | Deliverable surgical instrument |
US9915145B2 (en) * | 2014-03-06 | 2018-03-13 | Halliburton Energy Services, Inc. | Downhole power and data transfer using resonators |
US20170167250A1 (en) * | 2014-03-06 | 2017-06-15 | Halliburton Energy Services, Inc. | Downhole power and data transfer using resonators |
US12023023B2 (en) | 2014-03-26 | 2024-07-02 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US12285166B2 (en) | 2014-03-26 | 2025-04-29 | Cilag Gmbh International | Feedback algorithms for manual bailout systems for surgical instruments |
US11497488B2 (en) | 2014-03-26 | 2022-11-15 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US11259799B2 (en) | 2014-03-26 | 2022-03-01 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US10898185B2 (en) | 2014-03-26 | 2021-01-26 | Ethicon Llc | Surgical instrument power management through sleep and wake up control |
US10863981B2 (en) | 2014-03-26 | 2020-12-15 | Ethicon Llc | Interface systems for use with surgical instruments |
US12023022B2 (en) | 2014-03-26 | 2024-07-02 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US10588626B2 (en) | 2014-03-26 | 2020-03-17 | Ethicon Llc | Surgical instrument displaying subsequent step of use |
US11918222B2 (en) | 2014-04-16 | 2024-03-05 | Cilag Gmbh International | Stapling assembly having firing member viewing windows |
US12285171B2 (en) | 2014-04-16 | 2025-04-29 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11517315B2 (en) | 2014-04-16 | 2022-12-06 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11717294B2 (en) | 2014-04-16 | 2023-08-08 | Cilag Gmbh International | End effector arrangements comprising indicators |
US11974746B2 (en) | 2014-04-16 | 2024-05-07 | Cilag Gmbh International | Anvil for use with a surgical stapling assembly |
US12256931B2 (en) | 2014-04-16 | 2025-03-25 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11883026B2 (en) | 2014-04-16 | 2024-01-30 | Cilag Gmbh International | Fastener cartridge assemblies and staple retainer cover arrangements |
US11266409B2 (en) | 2014-04-16 | 2022-03-08 | Cilag Gmbh International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
US11963678B2 (en) | 2014-04-16 | 2024-04-23 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11925353B2 (en) | 2014-04-16 | 2024-03-12 | Cilag Gmbh International | Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel |
US12089849B2 (en) | 2014-04-16 | 2024-09-17 | Cilag Gmbh International | Staple cartridges including a projection |
US11596406B2 (en) | 2014-04-16 | 2023-03-07 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11382627B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Surgical stapling assembly comprising a firing member including a lateral extension |
US10561422B2 (en) | 2014-04-16 | 2020-02-18 | Ethicon Llc | Fastener cartridge comprising deployable tissue engaging members |
US11298134B2 (en) | 2014-04-16 | 2022-04-12 | Cilag Gmbh International | Fastener cartridge comprising non-uniform fasteners |
US11944307B2 (en) | 2014-04-16 | 2024-04-02 | Cilag Gmbh International | Surgical stapling system including jaw windows |
US12274445B2 (en) | 2014-04-16 | 2025-04-15 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11382625B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Fastener cartridge comprising non-uniform fasteners |
US10432027B2 (en) * | 2014-05-13 | 2019-10-01 | Mitsubishi Electric Engineering Company, Limited | Movable portion transmission system using wireless power transmission |
US20170047787A1 (en) * | 2014-05-13 | 2017-02-16 | Mitsubishi Electric Engineering Company, Limited | Movable portion transmission system using wireless power transmission |
WO2015177759A1 (en) * | 2014-05-23 | 2015-11-26 | I.M.A. Industria Macchine Automatiche S.P.A. | Working unit equipped with a device for contactless electricity transfer and method for contactless electricity transfer in a working unit |
US12042147B2 (en) | 2014-09-05 | 2024-07-23 | Cllag GmbH International | Smart cartridge wake up operation and data retention |
US11653918B2 (en) | 2014-09-05 | 2023-05-23 | Cilag Gmbh International | Local display of tissue parameter stabilization |
US11071545B2 (en) | 2014-09-05 | 2021-07-27 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11717297B2 (en) | 2014-09-05 | 2023-08-08 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11076854B2 (en) | 2014-09-05 | 2021-08-03 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US10905423B2 (en) | 2014-09-05 | 2021-02-02 | Ethicon Llc | Smart cartridge wake up operation and data retention |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US11389162B2 (en) | 2014-09-05 | 2022-07-19 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11406386B2 (en) | 2014-09-05 | 2022-08-09 | Cilag Gmbh International | End effector including magnetic and impedance sensors |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US12076017B2 (en) | 2014-09-18 | 2024-09-03 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US12016564B2 (en) | 2014-09-26 | 2024-06-25 | Cilag Gmbh International | Circular fastener cartridges for applying radially expandable fastener lines |
US11202633B2 (en) | 2014-09-26 | 2021-12-21 | Cilag Gmbh International | Surgical stapling buttresses and adjunct materials |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US10751053B2 (en) | 2014-09-26 | 2020-08-25 | Ethicon Llc | Fastener cartridges for applying expandable fastener lines |
US10736630B2 (en) | 2014-10-13 | 2020-08-11 | Ethicon Llc | Staple cartridge |
US11701114B2 (en) | 2014-10-16 | 2023-07-18 | Cilag Gmbh International | Staple cartridge |
US10905418B2 (en) | 2014-10-16 | 2021-02-02 | Ethicon Llc | Staple cartridge comprising a tissue thickness compensator |
US11931031B2 (en) | 2014-10-16 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a deck including an upper surface and a lower surface |
US12004741B2 (en) | 2014-10-16 | 2024-06-11 | Cilag Gmbh International | Staple cartridge comprising a tissue thickness compensator |
US11918210B2 (en) | 2014-10-16 | 2024-03-05 | Cilag Gmbh International | Staple cartridge comprising a cartridge body including a plurality of wells |
US11185325B2 (en) | 2014-10-16 | 2021-11-30 | Cilag Gmbh International | End effector including different tissue gaps |
US11931038B2 (en) | 2014-10-29 | 2024-03-19 | Cilag Gmbh International | Cartridge assemblies for surgical staplers |
US11457918B2 (en) | 2014-10-29 | 2022-10-04 | Cilag Gmbh International | Cartridge assemblies for surgical staplers |
US11864760B2 (en) | 2014-10-29 | 2024-01-09 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11241229B2 (en) | 2014-10-29 | 2022-02-08 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11337698B2 (en) | 2014-11-06 | 2022-05-24 | Cilag Gmbh International | Staple cartridge comprising a releasable adjunct material |
US10617417B2 (en) | 2014-11-06 | 2020-04-14 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US12114859B2 (en) | 2014-12-10 | 2024-10-15 | Cilag Gmbh International | Articulatable surgical instrument system |
US11382628B2 (en) | 2014-12-10 | 2022-07-12 | Cilag Gmbh International | Articulatable surgical instrument system |
US10945728B2 (en) | 2014-12-18 | 2021-03-16 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10695058B2 (en) | 2014-12-18 | 2020-06-30 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US11517311B2 (en) | 2014-12-18 | 2022-12-06 | Cilag Gmbh International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US11812958B2 (en) | 2014-12-18 | 2023-11-14 | Cilag Gmbh International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US12029419B2 (en) | 2014-12-18 | 2024-07-09 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US11553911B2 (en) | 2014-12-18 | 2023-01-17 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US11399831B2 (en) | 2014-12-18 | 2022-08-02 | Cilag Gmbh International | Drive arrangements for articulatable surgical instruments |
US11547404B2 (en) | 2014-12-18 | 2023-01-10 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US11678877B2 (en) | 2014-12-18 | 2023-06-20 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US10743873B2 (en) | 2014-12-18 | 2020-08-18 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US12108950B2 (en) | 2014-12-18 | 2024-10-08 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US11571207B2 (en) | 2014-12-18 | 2023-02-07 | Cilag Gmbh International | Surgical system including lateral supports for a flexible drive member |
US11083453B2 (en) | 2014-12-18 | 2021-08-10 | Cilag Gmbh International | Surgical stapling system including a flexible firing actuator and lateral buckling supports |
US11547403B2 (en) | 2014-12-18 | 2023-01-10 | Cilag Gmbh International | Surgical instrument having a laminate firing actuator and lateral buckling supports |
US10806448B2 (en) | 2014-12-18 | 2020-10-20 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US11324506B2 (en) | 2015-02-27 | 2022-05-10 | Cilag Gmbh International | Modular stapling assembly |
US11744588B2 (en) | 2015-02-27 | 2023-09-05 | Cilag Gmbh International | Surgical stapling instrument including a removably attachable battery pack |
US12076018B2 (en) | 2015-02-27 | 2024-09-03 | Cilag Gmbh International | Modular stapling assembly |
US10966627B2 (en) | 2015-03-06 | 2021-04-06 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11826132B2 (en) | 2015-03-06 | 2023-11-28 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US11426160B2 (en) | 2015-03-06 | 2022-08-30 | Cilag Gmbh International | Smart sensors with local signal processing |
US11350843B2 (en) | 2015-03-06 | 2022-06-07 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11944338B2 (en) | 2015-03-06 | 2024-04-02 | Cilag Gmbh International | Multiple level thresholds to modify operation of powered surgical instruments |
US11224423B2 (en) | 2015-03-06 | 2022-01-18 | Cilag Gmbh International | Smart sensors with local signal processing |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10772625B2 (en) | 2015-03-06 | 2020-09-15 | Ethicon Llc | Signal and power communication system positioned on a rotatable shaft |
US10531887B2 (en) | 2015-03-06 | 2020-01-14 | Ethicon Llc | Powered surgical instrument including speed display |
US10524787B2 (en) | 2015-03-06 | 2020-01-07 | Ethicon Llc | Powered surgical instrument with parameter-based firing rate |
US11109859B2 (en) | 2015-03-06 | 2021-09-07 | Cilag Gmbh International | Surgical instrument comprising a lockable battery housing |
US11918212B2 (en) | 2015-03-31 | 2024-03-05 | Cilag Gmbh International | Surgical instrument with selectively disengageable drive systems |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US11058425B2 (en) | 2015-08-17 | 2021-07-13 | Ethicon Llc | Implantable layers for a surgical instrument |
US11344299B2 (en) | 2015-09-23 | 2022-05-31 | Cilag Gmbh International | Surgical stapler having downstream current-based motor control |
US11849946B2 (en) | 2015-09-23 | 2023-12-26 | Cilag Gmbh International | Surgical stapler having downstream current-based motor control |
US11490889B2 (en) | 2015-09-23 | 2022-11-08 | Cilag Gmbh International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10863986B2 (en) | 2015-09-23 | 2020-12-15 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US11026678B2 (en) | 2015-09-23 | 2021-06-08 | Cilag Gmbh International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US12245901B2 (en) | 2015-09-25 | 2025-03-11 | Cilag Gmbh International | Implantable layer comprising boundary indicators |
US11076929B2 (en) | 2015-09-25 | 2021-08-03 | Cilag Gmbh International | Implantable adjunct systems for determining adjunct skew |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11553916B2 (en) | 2015-09-30 | 2023-01-17 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US11793522B2 (en) | 2015-09-30 | 2023-10-24 | Cilag Gmbh International | Staple cartridge assembly including a compressible adjunct |
US11903586B2 (en) | 2015-09-30 | 2024-02-20 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US12137912B2 (en) | 2015-09-30 | 2024-11-12 | Cilag Gmbh International | Compressible adjunct with attachment regions |
US10603039B2 (en) | 2015-09-30 | 2020-03-31 | Ethicon Llc | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US11690623B2 (en) | 2015-09-30 | 2023-07-04 | Cilag Gmbh International | Method for applying an implantable layer to a fastener cartridge |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10932779B2 (en) | 2015-09-30 | 2021-03-02 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US11944308B2 (en) | 2015-09-30 | 2024-04-02 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US11712244B2 (en) | 2015-09-30 | 2023-08-01 | Cilag Gmbh International | Implantable layer with spacer fibers |
US11083454B2 (en) | 2015-12-30 | 2021-08-10 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11484309B2 (en) | 2015-12-30 | 2022-11-01 | Cilag Gmbh International | Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence |
US11129613B2 (en) | 2015-12-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments with separable motors and motor control circuits |
US11759208B2 (en) | 2015-12-30 | 2023-09-19 | Cilag Gmbh International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11058422B2 (en) | 2015-12-30 | 2021-07-13 | Cilag Gmbh International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US12156653B2 (en) | 2015-12-30 | 2024-12-03 | Cilag Gmbh International | Surgical instruments with motor control circuits |
US10588625B2 (en) | 2016-02-09 | 2020-03-17 | Ethicon Llc | Articulatable surgical instruments with off-axis firing beam arrangements |
US11523823B2 (en) | 2016-02-09 | 2022-12-13 | Cilag Gmbh International | Surgical instruments with non-symmetrical articulation arrangements |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US11730471B2 (en) | 2016-02-09 | 2023-08-22 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US11826045B2 (en) | 2016-02-12 | 2023-11-28 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11779336B2 (en) | 2016-02-12 | 2023-10-10 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11344303B2 (en) | 2016-02-12 | 2022-05-31 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US11771454B2 (en) | 2016-04-15 | 2023-10-03 | Cilag Gmbh International | Stapling assembly including a controller for monitoring a clamping laod |
US11931028B2 (en) | 2016-04-15 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11350932B2 (en) | 2016-04-15 | 2022-06-07 | Cilag Gmbh International | Surgical instrument with improved stop/start control during a firing motion |
US11517306B2 (en) | 2016-04-15 | 2022-12-06 | Cilag Gmbh International | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US12144500B2 (en) | 2016-04-15 | 2024-11-19 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11051810B2 (en) | 2016-04-15 | 2021-07-06 | Cilag Gmbh International | Modular surgical instrument with configurable operating mode |
US11191545B2 (en) | 2016-04-15 | 2021-12-07 | Cilag Gmbh International | Staple formation detection mechanisms |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11317910B2 (en) | 2016-04-15 | 2022-05-03 | Cilag Gmbh International | Surgical instrument with detection sensors |
US11284891B2 (en) | 2016-04-15 | 2022-03-29 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11642125B2 (en) | 2016-04-15 | 2023-05-09 | Cilag Gmbh International | Robotic surgical system including a user interface and a control circuit |
US11026684B2 (en) | 2016-04-15 | 2021-06-08 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11311292B2 (en) | 2016-04-15 | 2022-04-26 | Cilag Gmbh International | Surgical instrument with detection sensors |
US12261471B2 (en) | 2016-04-18 | 2025-03-25 | Cilag Gmbh International | Technologies for detection of drive train failures in a surgical instrument |
US11350928B2 (en) | 2016-04-18 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising a tissue thickness lockout and speed control system |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US11147554B2 (en) | 2016-04-18 | 2021-10-19 | Cilag Gmbh International | Surgical instrument system comprising a magnetic lockout |
US11559303B2 (en) | 2016-04-18 | 2023-01-24 | Cilag Gmbh International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US11811253B2 (en) | 2016-04-18 | 2023-11-07 | Cilag Gmbh International | Surgical robotic system with fault state detection configurations based on motor current draw |
CN105871416A (en) * | 2016-04-18 | 2016-08-17 | 国网山东省电力公司郓城县供电公司 | Device of using mains supply line for transmitting alarm low-frequency signals |
US12171507B2 (en) | 2016-08-16 | 2024-12-24 | Cilag Gmbh International | Surgical tool with manual control of end effector jaws |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10603036B2 (en) | 2016-12-21 | 2020-03-31 | Ethicon Llc | Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US12226100B2 (en) | 2016-12-21 | 2025-02-18 | Cilag Gmbh International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11369376B2 (en) | 2016-12-21 | 2022-06-28 | Cilag Gmbh International | Surgical stapling systems |
US11497499B2 (en) | 2016-12-21 | 2022-11-15 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10517596B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Articulatable surgical instruments with articulation stroke amplification features |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
US12274442B2 (en) | 2016-12-21 | 2025-04-15 | Cilag Gmbh International | Surgical staple cartridge alignment features |
US10610224B2 (en) | 2016-12-21 | 2020-04-07 | Ethicon Llc | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US11160553B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Surgical stapling systems |
US10588630B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical tool assemblies with closure stroke reduction features |
US11160551B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US10517595B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US11918215B2 (en) | 2016-12-21 | 2024-03-05 | Cilag Gmbh International | Staple cartridge with array of staple pockets |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10881401B2 (en) | 2016-12-21 | 2021-01-05 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
US12011166B2 (en) | 2016-12-21 | 2024-06-18 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US12004745B2 (en) | 2016-12-21 | 2024-06-11 | Cilag Gmbh International | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US10617414B2 (en) | 2016-12-21 | 2020-04-14 | Ethicon Llc | Closure member arrangements for surgical instruments |
US11701115B2 (en) | 2016-12-21 | 2023-07-18 | Cilag Gmbh International | Methods of stapling tissue |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US10588631B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical instruments with positive jaw opening features |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US11096689B2 (en) | 2016-12-21 | 2021-08-24 | Cilag Gmbh International | Shaft assembly comprising a lockout |
US11317913B2 (en) | 2016-12-21 | 2022-05-03 | Cilag Gmbh International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US10959727B2 (en) | 2016-12-21 | 2021-03-30 | Ethicon Llc | Articulatable surgical end effector with asymmetric shaft arrangement |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US11564688B2 (en) | 2016-12-21 | 2023-01-31 | Cilag Gmbh International | Robotic surgical tool having a retraction mechanism |
US12185946B2 (en) | 2016-12-21 | 2025-01-07 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US10835245B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot |
US10779823B2 (en) | 2016-12-21 | 2020-09-22 | Ethicon Llc | Firing member pin angle |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US11849948B2 (en) | 2016-12-21 | 2023-12-26 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US11571210B2 (en) | 2016-12-21 | 2023-02-07 | Cilag Gmbh International | Firing assembly comprising a multiple failed-state fuse |
US11179155B2 (en) | 2016-12-21 | 2021-11-23 | Cilag Gmbh International | Anvil arrangements for surgical staplers |
US10973516B2 (en) | 2016-12-21 | 2021-04-13 | Ethicon Llc | Surgical end effectors and adaptable firing members therefor |
US10524789B2 (en) | 2016-12-21 | 2020-01-07 | Ethicon Llc | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
US10639035B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical stapling instruments and replaceable tool assemblies thereof |
US10639034B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
US10582928B2 (en) | 2016-12-21 | 2020-03-10 | Ethicon Llc | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
US11350934B2 (en) | 2016-12-21 | 2022-06-07 | Cilag Gmbh International | Staple forming pocket arrangement to accommodate different types of staples |
US11992213B2 (en) | 2016-12-21 | 2024-05-28 | Cilag Gmbh International | Surgical stapling instruments with replaceable staple cartridges |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US11191543B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Assembly comprising a lock |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
US10905422B2 (en) | 2016-12-21 | 2021-02-02 | Ethicon Llc | Surgical instrument for use with a robotic surgical system |
US11224428B2 (en) | 2016-12-21 | 2022-01-18 | Cilag Gmbh International | Surgical stapling systems |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10675025B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Shaft assembly comprising separately actuatable and retractable systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US11957344B2 (en) | 2016-12-21 | 2024-04-16 | Cilag Gmbh International | Surgical stapler having rows of obliquely oriented staples |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10893864B2 (en) | 2016-12-21 | 2021-01-19 | Ethicon | Staple cartridges and arrangements of staples and staple cavities therein |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US11191540B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument |
US11931034B2 (en) | 2016-12-21 | 2024-03-19 | Cilag Gmbh International | Surgical stapling instruments with smart staple cartridges |
US10542982B2 (en) | 2016-12-21 | 2020-01-28 | Ethicon Llc | Shaft assembly comprising first and second articulation lockouts |
US10687809B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Surgical staple cartridge with movable camming member configured to disengage firing member lockout features |
US11350935B2 (en) | 2016-12-21 | 2022-06-07 | Cilag Gmbh International | Surgical tool assemblies with closure stroke reduction features |
US11766259B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11766260B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Methods of stapling tissue |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US12245764B2 (en) | 2016-12-21 | 2025-03-11 | Cilag Gmbh International | Shaft assembly comprising a lockout |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US11653917B2 (en) | 2016-12-21 | 2023-05-23 | Cilag Gmbh International | Surgical stapling systems |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10595882B2 (en) | 2017-06-20 | 2020-03-24 | Ethicon Llc | Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11213302B2 (en) | 2017-06-20 | 2022-01-04 | Cilag Gmbh International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US12274438B2 (en) | 2017-06-20 | 2025-04-15 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11793513B2 (en) | 2017-06-20 | 2023-10-24 | Cilag Gmbh International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11871939B2 (en) | 2017-06-20 | 2024-01-16 | Cilag Gmbh International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD1039559S1 (en) | 2017-06-20 | 2024-08-20 | Cilag Gmbh International | Display panel with changeable graphical user interface |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US11672532B2 (en) | 2017-06-20 | 2023-06-13 | Cilag Gmbh International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
US12207820B2 (en) | 2017-06-27 | 2025-01-28 | Cilag Gmbh International | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US12161326B2 (en) | 2017-06-27 | 2024-12-10 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11141154B2 (en) | 2017-06-27 | 2021-10-12 | Cilag Gmbh International | Surgical end effectors and anvils |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11766258B2 (en) | 2017-06-27 | 2023-09-26 | Cilag Gmbh International | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11389161B2 (en) | 2017-06-28 | 2022-07-19 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10786253B2 (en) | 2017-06-28 | 2020-09-29 | Ethicon Llc | Surgical end effectors with improved jaw aperture arrangements |
US10758232B2 (en) | 2017-06-28 | 2020-09-01 | Ethicon Llc | Surgical instrument with positive jaw opening features |
US20190000530A1 (en) * | 2017-06-28 | 2019-01-03 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10903685B2 (en) * | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
EP3892206A1 (en) * | 2017-06-28 | 2021-10-13 | Ethicon LLC | Slip ring assemblies forming capacitive channels |
US11083455B2 (en) | 2017-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument comprising an articulation system ratio |
US11696759B2 (en) | 2017-06-28 | 2023-07-11 | Cilag Gmbh International | Surgical stapling instruments comprising shortened staple cartridge noses |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10588633B2 (en) | 2017-06-28 | 2020-03-17 | Ethicon Llc | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
US10779824B2 (en) | 2017-06-28 | 2020-09-22 | Ethicon Llc | Surgical instrument comprising an articulation system lockable by a closure system |
USD1018577S1 (en) | 2017-06-28 | 2024-03-19 | Cilag Gmbh International | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11478242B2 (en) | 2017-06-28 | 2022-10-25 | Cilag Gmbh International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10695057B2 (en) | 2017-06-28 | 2020-06-30 | Ethicon Llc | Surgical instrument lockout arrangement |
US11000279B2 (en) | 2017-06-28 | 2021-05-11 | Ethicon Llc | Surgical instrument comprising an articulation system ratio |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11529140B2 (en) | 2017-06-28 | 2022-12-20 | Cilag Gmbh International | Surgical instrument lockout arrangement |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US11642128B2 (en) | 2017-06-28 | 2023-05-09 | Cilag Gmbh International | Method for articulating a surgical instrument |
US11826048B2 (en) | 2017-06-28 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
CN110800173A (en) * | 2017-06-28 | 2020-02-14 | 爱惜康有限责任公司 | Surgical shaft assembly with slip ring assembly forming capacitive channel |
US11484310B2 (en) | 2017-06-28 | 2022-11-01 | Cilag Gmbh International | Surgical instrument comprising a shaft including a closure tube profile |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11890005B2 (en) | 2017-06-29 | 2024-02-06 | Cilag Gmbh International | Methods for closed loop velocity control for robotic surgical instrument |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11998199B2 (en) | 2017-09-29 | 2024-06-04 | Cllag GmbH International | System and methods for controlling a display of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US12076011B2 (en) | 2017-10-30 | 2024-09-03 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11963680B2 (en) | 2017-10-31 | 2024-04-23 | Cilag Gmbh International | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11478244B2 (en) | 2017-10-31 | 2022-10-25 | Cilag Gmbh International | Cartridge body design with force reduction based on firing completion |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11896222B2 (en) | 2017-12-15 | 2024-02-13 | Cilag Gmbh International | Methods of operating surgical end effectors |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11284953B2 (en) | 2017-12-19 | 2022-03-29 | Cilag Gmbh International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US12076096B2 (en) | 2017-12-19 | 2024-09-03 | Cilag Gmbh International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11369368B2 (en) | 2017-12-21 | 2022-06-28 | Cilag Gmbh International | Surgical instrument comprising synchronized drive systems |
US11364027B2 (en) | 2017-12-21 | 2022-06-21 | Cilag Gmbh International | Surgical instrument comprising speed control |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11849939B2 (en) | 2017-12-21 | 2023-12-26 | Cilag Gmbh International | Continuous use self-propelled stapling instrument |
US11179151B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a display |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
US11179152B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a tissue grasping system |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11883019B2 (en) | 2017-12-21 | 2024-01-30 | Cilag Gmbh International | Stapling instrument comprising a staple feeding system |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11576668B2 (en) | 2017-12-21 | 2023-02-14 | Cilag Gmbh International | Staple instrument comprising a firing path display |
US11337691B2 (en) | 2017-12-21 | 2022-05-24 | Cilag Gmbh International | Surgical instrument configured to determine firing path |
US10682134B2 (en) | 2017-12-21 | 2020-06-16 | Ethicon Llc | Continuous use self-propelled stapling instrument |
US11583274B2 (en) | 2017-12-21 | 2023-02-21 | Cilag Gmbh International | Self-guiding stapling instrument |
CN108768491A (en) * | 2018-07-03 | 2018-11-06 | 成都博士信智能科技发展有限公司 | Submersible communication system and method |
US11757490B2 (en) | 2018-08-02 | 2023-09-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V | Data transmission from a user terminal to another apparatus |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US12262888B2 (en) | 2018-08-20 | 2025-04-01 | Cilag Gmbh International | Surgical instruments with progressive jaw closure arrangements |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11957339B2 (en) | 2018-08-20 | 2024-04-16 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US12076008B2 (en) | 2018-08-20 | 2024-09-03 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US12096167B2 (en) | 2019-01-30 | 2024-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Bidirectional configuration of sensor nodes with mobile phone with no extension |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US12290259B2 (en) | 2019-03-25 | 2025-05-06 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US12294422B2 (en) | 2019-05-10 | 2025-05-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Efficient communication to configure sensor nodes |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US11684369B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11744593B2 (en) | 2019-06-28 | 2023-09-05 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11553919B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US11660090B2 (en) | 2020-07-28 | 2023-05-30 | Cllag GmbH International | Surgical instruments with segmented flexible drive arrangements |
US11864756B2 (en) | 2020-07-28 | 2024-01-09 | Cilag Gmbh International | Surgical instruments with flexible ball chain drive arrangements |
US12064107B2 (en) | 2020-07-28 | 2024-08-20 | Cilag Gmbh International | Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements |
US11974741B2 (en) | 2020-07-28 | 2024-05-07 | Cilag Gmbh International | Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators |
US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
US12220126B2 (en) | 2020-07-28 | 2025-02-11 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11883024B2 (en) | 2020-07-28 | 2024-01-30 | Cilag Gmbh International | Method of operating a surgical instrument |
US12161323B2 (en) | 2020-07-28 | 2024-12-10 | Cilag Gmbh International | Surgical instruments with torsion spine drive arrangements |
US11857182B2 (en) | 2020-07-28 | 2024-01-02 | Cilag Gmbh International | Surgical instruments with combination function articulation joint arrangements |
US11826013B2 (en) | 2020-07-28 | 2023-11-28 | Cilag Gmbh International | Surgical instruments with firing member closure features |
US11737748B2 (en) | 2020-07-28 | 2023-08-29 | Cilag Gmbh International | Surgical instruments with double spherical articulation joints with pivotable links |
US11638582B2 (en) | 2020-07-28 | 2023-05-02 | Cilag Gmbh International | Surgical instruments with torsion spine drive arrangements |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US12029421B2 (en) | 2020-10-29 | 2024-07-09 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US12226099B2 (en) | 2020-10-29 | 2025-02-18 | Cilag Gmbh International | Surgical stapler with pulse width modulated driven adjustable speed staple firing stroke |
US12076194B2 (en) | 2020-10-29 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US12016559B2 (en) | 2020-12-02 | 2024-06-25 | Cllag GmbH International | Powered surgical instruments with communication interfaces through sterile barrier |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US12171427B2 (en) | 2020-12-02 | 2024-12-24 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US12133648B2 (en) | 2020-12-02 | 2024-11-05 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US12232724B2 (en) | 2020-12-02 | 2025-02-25 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US12035911B2 (en) | 2021-02-26 | 2024-07-16 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US12035910B2 (en) | 2021-02-26 | 2024-07-16 | Cllag GmbH International | Monitoring of internal systems to detect and track cartridge motion status |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12144501B2 (en) | 2021-02-26 | 2024-11-19 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US12035912B2 (en) | 2021-02-26 | 2024-07-16 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US12042146B2 (en) | 2021-03-22 | 2024-07-23 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US12023026B2 (en) | 2021-03-22 | 2024-07-02 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11918217B2 (en) | 2021-05-28 | 2024-03-05 | Cilag Gmbh International | Stapling instrument comprising a staple cartridge insertion stop |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120007442A1 (en) | Rotary data and power transfer system | |
US8350653B2 (en) | Electrical connector system | |
US11063674B2 (en) | Communications system | |
US8175526B2 (en) | Communication through a barrier | |
US8577288B2 (en) | Subsea transfer system providing wireless data transfer, electrical power transfer and navigation | |
JP6074368B2 (en) | Underwater connector device | |
US7411517B2 (en) | Apparatus and method for providing communication between a probe and a sensor | |
US10735107B2 (en) | Communications system | |
CA2916237C (en) | Apparatus and methods for communicating downhole data | |
GB2483374A (en) | Transferring power between a fixed unit and a rotating unit using a rotary transformer, and also transferring data | |
WO2014034491A1 (en) | Electric power transmission device and electric power transmission method | |
US8325056B2 (en) | System for underwater communications comprising fluid modifying means | |
US20110287712A1 (en) | System for wireless communications through sea vessel hull | |
GB2445015A (en) | Electromagnetic below ice communications | |
WO2013088157A1 (en) | Mooring monitoring system and method for offshore apparatus | |
JP2018046668A (en) | Wireless power supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WFS TECHNOLOGIES LTD., UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RHODES, MARK;HYLAND, BRENDAN;REEL/FRAME:026974/0259 Effective date: 20110921 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |