US20220087904A1 - Wearable fluid delivery system - Google Patents

Wearable fluid delivery system Download PDF

Info

Publication number
US20220087904A1
US20220087904A1 US17/478,905 US202117478905A US2022087904A1 US 20220087904 A1 US20220087904 A1 US 20220087904A1 US 202117478905 A US202117478905 A US 202117478905A US 2022087904 A1 US2022087904 A1 US 2022087904A1
Authority
US
United States
Prior art keywords
user
liquid
pump
patient
wearable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/478,905
Inventor
Neal Piper
Hill Johnson
Jonathan Jay Rosen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luminoah LLC
Luminoah Inc
Luminoah Inc
Original Assignee
Luminoah LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luminoah LLC filed Critical Luminoah LLC
Priority to US17/478,905 priority Critical patent/US20220087904A1/en
Priority to PCT/US2021/051116 priority patent/WO2023043464A1/en
Priority to EP21957700.4A priority patent/EP4213915A4/en
Publication of US20220087904A1 publication Critical patent/US20220087904A1/en
Assigned to LUMINOAH, LLC reassignment LUMINOAH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Johnson, Hill, PIPER, NEAL, ROSEN, JONATHAN
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J15/00Feeding-tubes for therapeutic purposes
    • A61J15/0026Parts, details or accessories for feeding-tubes
    • A61J15/0053Means for fixing the tube outside of the body, e.g. by a special shape, by fixing it to the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J15/00Feeding-tubes for therapeutic purposes
    • A61J15/0026Parts, details or accessories for feeding-tubes
    • A61J15/0076Feeding pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J15/00Feeding-tubes for therapeutic purposes
    • A61J15/0026Parts, details or accessories for feeding-tubes
    • A61J15/008Sensor means, e.g. for sensing reflux, acidity or pressure
    • A61J15/0084Sensor means, e.g. for sensing reflux, acidity or pressure for sensing parameters related to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J15/00Feeding-tubes for therapeutic purposes
    • A61J15/0015Gastrostomy feeding-tubes

Definitions

  • Enteral nutrition is a process that delivers nutrition directly to the stomach or small intestine in place of traditional oral feeding. If a patient is receiving treatment outside of a hospital setting, the process is referred to as Home Enteral Nutrition (HEN).
  • HEN Home Enteral Nutrition
  • a 2013 study indicates that as many as 250,000 adults and 190,000 children currently require HEN as a part of their medical treatment in the United States.
  • the leading conditions that indicate a need for HEN include cancer, nonmalignant respiratory disease, and neurological disorders.
  • Enteral nutrition currently requires an array of medical resources and technologies including doctor assessment, a nutrition plan prescribed by a nutrition support team, a surgically implanted gastrostomy tube, a delivery system, tubing sets, and a nutritional formula.
  • GI gastrointestinal tract
  • man-made tubes that are placed into the GI tract.
  • the placed tubes In order to access any portion of the patient's GI tract, the placed tubes must enter the patient's body through incisions created in the patient's abdominal wall or through existing body cavities such as the nasal cavity.
  • any such tube is placed in the GI tract, while the proximal end of any such tube remains outside of the patient's body, permitting the proximal end to interface with enteral nutrition delivery technology.
  • Surgically implanted tubes are generally indicated for long-term enteral nutrition needs while nasally placed tubes are indicated for short-term (less than two months) needs or when a patient is not healthy enough to tolerate surgery.
  • gastrostomy tubes are placed one of three ways: (1) surgically, through an open procedure or laparoscopically, (2) endoscopically, or (3) radiologically with a percutaneous insertion procedure.
  • FIG. 1 is a view of the device in-situ upon a patient's torso consistent with certain embodiments of the present invention.
  • FIG. 2A is a partially exploded front view of the device consistent with certain embodiments of the present invention.
  • FIG. 2B is a rear view of the device consistent with certain embodiments of the present invention.
  • FIG. 3A is a first detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 3B is a second detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 3C is a third detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 4 illustrates several smart-device-integrated user-experiences consistent with certain embodiments of the present invention.
  • Disposable Pump Head refers to a single use pump (such as, by way of non-limiting example, Quantex CS-6) that is indicated for a set volume of use and then thrown away.
  • Pump Tubing refers to all necessary tubing to connect a nutrient reservoir to a disposable pump head, and the disposable pump head to a patient access device.
  • This may include the proprietary “enFit” adaptor to connect directly to the patient's access device, such as, by way of non-limiting example, Gastrostomy button (G-button), but may simply be a standard connection to interface with an extension set that would then connect to patient's access device.
  • G-button Gastrostomy button
  • Reference herein to “Nutrient Reservoir” refers to a container that is used to hold enteral nutritional formula and deliver contents to the disposable pump head through the pump tubing. This container may come pre-filled and ready to directly insert into the proprietary “enLumin” system, or may come as a reusable and refillable container.
  • Inlet Cxn refers to the tubing that connects the nutrient reservoir to the disposable pump head.
  • Outlet Cxn refers to the tubing that connects the disposable pump head to the patient's access device or extension set.
  • the present invention is directed to an enteral nutrition system.
  • Malnutrition and dysphagia are increasing, especially in chronic disease patients and elderly people.
  • the occurrence of malnutrition is high in patients with chronic illnesses like cancer, neurological disorders, heart failure, and COPD, and increases with age as well.
  • the prevalence of various cancers, especially gastric, head and neck/throat, and esophageal cancers is growing globally, correlating to a rise in the need for enteral feeding in some oncology patients.
  • enteral feeding is playing a role for the first time. These include areas such as sports medicine and athletic training, pregnant women who suffer from hyperemesis gravidarum, and treatment for bulimia/anorexia conditions.
  • the innovative system herein described may comprise an in-line or immersion pump, an innovative administration reservoir, and a wearable housing that facilitates simplified portable feeding.
  • the instant innovation allows the patient full or near-full mobility as nutritive fluids are administered. In this way, a patient may find the product useful in their everyday life, as it may grant them autonomy by untethering them from a pole and machine that requires them to be immobile a good portion of the day.
  • the system is a safer alternative than existing solutions because it takes away the risk of having tension applied to the extra slack of tubing, a situation which may cause problems with safety and efficacy.
  • the present invention is directed to an enteral nutrition system comprising an immersion fluid/nutrition driving mechanism, an administration reservoir, an electronic control and communication element, and a portable housing or accessory designed to contain the aforementioned components of the system.
  • the nutrition driving mechanism in aspects, may include: a physical mechanism for sustained supply of liquid at a pump inlet; a device-specific attachment for securement to a wearable garment; direct or indirect connection to smart devices for communication with a controller and data collection; and associated sensors for detection of pump occlusions, priming completion, and liquid volume recording capabilities.
  • the administration reservoir comprises a secure attachment to the wearable garment.
  • the enteral feeding device wraps around a patient's midsection and connects directly to a surgically implanted gastrostomy tube.
  • a food pouch is capable of being inserted into the food reservoir section on the front of the wrap and a rolling mechanism pushes food to the feeding pump which then delivers the food directly into the patient's stomach or intestine.
  • the rate of feeding may be wirelessly controlled by a mobile application in communication with the electronic control and communication element.
  • Sensors embedded within the wrap may also be capable of monitoring vitals like heart rate, which may also be tracked/monitored via a mobile application.
  • the present invention is directed at an immersion pumping system for the delivery of enteral nutrition formula to a patient through nasal, gastric, or jejunal access.
  • the present invention is directed to an enteral nutrition device, wherein the fluid driver is capable of providing improved efficiencies because the pump may produce necessary flow rates for delivering nutrition in a smaller device footprint.
  • the present invention may be comprised of a system with one or more pumping mechanisms to deliver fluid to a patient.
  • the present invention may be directed to an enteral nutrition device, wherein the fluid driver is capable of providing improved portability because the system may operate with the administration reservoir horizontally arranged with respect to the pumping mechanism.
  • the instant system may facilitate access and control by prescribing physicians and home health departments within large hospital systems. Prescribing physicians may be provided with access to synchronous or near-synchronous communication with the electronic communication element, providing insights into the home feeding environment and functioning of the system. These insights may include information regarding tracking features and processing utilizing one or more Machine Learning algorithms to assist with changes to the system and treatment.
  • doctors may have the ability to make informed decisions and identify inconsistencies between prescribed care and observed results when reviewing tracking data and analysis information from the enteral feeding system.
  • the system may assist with and guide troubleshooting processes as a result of smartphone or computer connectivity granting remote access and control to the user, caregivers, and/or medical providers.
  • the improved system and device may provide increased product life spans as a result of the portable design mitigating accidental damages due to user error or dropping hazards.
  • the system allows enhanced autonomy over patient feeds by having the ability to be ambulatory as they are using the device and system.
  • the portable and ambulatory nature of the system may eliminate or nearly-eliminate a need for gravity-fed feeds, which allows the patient the freedom to receive a feeding without being tethered to a stand.
  • the wearable capability of the enteral feeding system may eliminate the need for extra tubing, which may be a tripping hazard and cause the tubing, fitted to the stomach in typical situations, to be ripped from the abdomen.
  • the enteral feeding system may be relatively quiet, have long battery life, and be capable of low heat generation.
  • the system may provide for the capability of connectivity with existing G-tubes, J-tubes, and even GJ-tubes, or related technologies.
  • the nutrition inlet device may provide a housing or container for a pouch capable of allowing insertion of nutrition products that are delivered at a controllable rate through the inlet via the pump device.
  • the enteral feeding system may be integrated and communicate with a smart phone application or other control application. This integration and communication capability permits the system to track fluid intake and feed times, provide notifications and other communications, and provides the ability to share data with caregivers, including a medical provider/physician/nurse/caregiver/family member.
  • the system may eliminate the difficult setup and manual priming actions currently required by patients, thus reducing the burden of effort required to initiate each feeding session.
  • the device may also have a sufficiently low profile when being worn by a user that the system as a whole may be difficult to see, recognize, identify, or perceive by an outside observer.
  • the enteral feeding system may be configured for prolonged delivery of nutritional formula during ambulation.
  • the system may include one or more devices and components including, but not limited to, a housing containment garment configured to be worn on the body of the user, a pumping mechanism such as, in a non-limiting example, an immersion pump, an electronic command and control device, and an administration reservoir.
  • a system may be configured for the delivery of a medical fluid, including a medication or other therapeutic fluid, for the treatment of a patient condition for a specified duration of time, for a particular time or treatment, or for a specific and controllable rate of delivery.
  • the system may be used by oncology patients that undergo continuous home infusion chemotherapy that share many of the treatment, safety, efficacy, and quality of life issues that enteral nutrition patients experience.
  • the system is capable of providing customized or standardized delivery of a nutritional formula configured in a system capable of being worn by the user.
  • the system may include a garment worn on the body of the user, a pumping mechanism, a nutrient or fluid reservoir, and wireless or wired communication with an integrated computer or communication system/device (including, by way of non-limiting example, a smartphone, a computer, a computer processing user, and/or the cloud) which is capable of communicating with interested parties including but not necessarily limited to, the user, a relative of the user, caregiver, and/or a health care provider.
  • an integrated computer or communication system/device including, by way of non-limiting example, a smartphone, a computer, a computer processing user, and/or the cloud
  • the device is capable of alerting the user or a health care provider with information related to the system, patient/user, treatment, device, fluid, or other aspects related to the system and system capabilities.
  • alarms or alerts may be transmitted to a smartphone, computer, server, the cloud, or other remote electronic device.
  • the alarms or alerts may be delivered to a user via haptic feedback or may be visual, auditory, or textual in nature.
  • the present innovation may be an enteral nutrition feeding system including an immersion or in-line pumping mechanism, a fluid reservoir, a controller, and a wearable garment configured to contain the components of the system including but not limited to a pumping mechanism, the fluid reservoir, and control and communication electronics.
  • the pumping mechanism may include an apparatus capable of sustainably supplying a fluid at the pumping mechanism inlet, an attachment configured to secure the wearable garment to a user, a wireless or wired connection to an electronic device configured to communicate with the controller, the electronic control and communication apparatus, and one or more sensors for detecting one or more of pump occlusion, priming completion, liquid volume, and amount of liquid delivered.
  • the control electronics may be active to collect and store all data related to fluid delivery, fluid volume, feeding schedule, and information displayed and relayed to a user, caregiver, and/or medical professional.
  • the instant innovation includes a fluid reservoir for holding enteral nutrition fluids or other fluids as required by user needs, that is worn in a belt or other wearable device external to a patient.
  • the electronic command and control device for administering the enteral nutrition fluid via a pump is integrated into the belt or other wearable device.
  • the instant innovation includes a drive motor operative to affect the action of a disposable pump for administration of the fluid.
  • the drive motor is contained in the belt or other wearable device and as such does not become soiled by contact with the fluid passing from the fluid reservoir to the user.
  • the disposable pump connects the reservoir of fluid to a G-button or similar cross-cutaneous mechanical connector.
  • the instant innovation may be used for Intermittent Infusions. This would include infusions up to 4 hours long for patients that may be able to tolerate higher flow rates during their feeds. These individuals would be able to charge their devices between use, if constrained by battery life.
  • the instant innovation may be used for Continuous Infusions. These may be appropriate for individuals that may be attached to a feeding machine for 12-24 hours per day. Such use typically involves very low flow rates (below about 150 ml/hr) and supplies all hydration and nutrition needs for a single patient. These patients would require replaceable batteries or larger batteries to accommodate battery usage of up to 18 hours per day.
  • the instant innovation may be used for Night Feeds. These may include feedings for any user that requires infusions during their sleep to reach a certain level of nutrition. These users may also use low flow rates (below about 150 ml/hr) and would ideally benefit from a battery life that would not require a wired connection for the overnight infusion.
  • the instant innovation may incorporate disposable elements into an integrated system.
  • a disposable pump head, pump tubing, and a pre-filled fluid reservoir may be replaced after each feeding.
  • the pre-filled fluid reservoir may be replaced after each feeding and the disposable pump head and pump tubing may be replaced after each day's feedings, or, optionally, after each use of the system.
  • each of the disposable pump head, pump tubing, and reusable fluid reservoir may be replaced after each day's feedings.
  • the fluid reservoir may be pre-filled with any fluid, such as, in non-limiting examples, nutrient fluids, medications, or other therapeutic fluids, that may be pumped from the fluid reservoir through the pump for delivery to the user.
  • a wearable garment may be configured to assist with a method of mobile fluid infusion, including, for example, the administration of therapeutic agents for medical purposes.
  • the system may use an immersion pumping mechanism placed against the abdomen to deliver fluid to a patient.
  • the pumping mechanism may have components capable of removal for cleaning.
  • the components may include a removable cartridge with built-in tubing, a removable top cap for troubleshooting, maintenance, and cleaning purposes, a removable portion of the pumping mechanism, and/or a disposable rotor for the pumping mechanism.
  • the fluid reservoir may include one-way valve or two-way valves designed for refilling nutritional formula or other liquids into the fluid reservoir.
  • the fluid reservoir may include a specialized connection to the driving mechanism and/or it may include two specialized connections to two fluid driving mechanisms for delivery of the fluid from the fluid reservoir to the user.
  • the present system may include two driving mechanisms, such as a pump and a compressive rolling mechanism for the sustained delivery of nutrition, or the system may include two driving mechanisms, such as a pump and a pressurized compression system for the sustained delivery of fluids from the fluid reservoir.
  • the portable housing may be configured to include a compression wrap garment that may be worn on the abdomen, back, or other body part of the user, wherein the housing would be capable of custom or standardized connections between the pumping mechanism(s) and the fluid reservoir.
  • the housing may also be capable of facilitating connection of the system to the patient's surgical G-button connector, or other access site.
  • the invention may include a portable nutrition delivery system that is less than 10 pounds, less than 9 pounds, less than 8 pounds, less than 7 pounds, less than 6 pounds, less than 5 pounds, and so on.
  • the volume of the device may be less than 1000 cm 3 , less than 900 cm 3 , less than 800 cm 3 , less than 700 cm 3 , less than 600 cm 3 , less than 500 cm 3 , and so on.
  • the device may include pre-programmed settings for the delivery of fluids such as nutritional fluids for feeding, including feeding times, frequency, speed, duration, and other settings, although the settings may be manually controlled in real-time by a user, caregiver, or medical provider.
  • the programmed settings may be accessed, set, or changed by a user, caregiver, or medical provider, including in real-time and/or remotely.
  • a plurality of pre-programmed settings may be created for fluid delivery to a user.
  • 5 pre-programmed settings may be created to provide options for different types of feeding treatments as a standard configuration, however, this should in no way be considered limiting as other pre-programmed settings configurations may be created to provide customized fluid delivery programming.
  • the device may track trends of feeding including volume delivered, calories delivered, duration of nutrition fluid delivery per feeding episode, time of feeding, number of daily, weekly, or monthly feeds.
  • a Machine Learning algorithm may analyze collected data from each user, or from groups of users having similar characteristics, to determine changes to the pre-established and pre-programmed feeding session settings or to determine when fluid delivery parameters have changed sufficiently to create an alert that is transmitted to a user, caregiver, or medical provider. The trend analysis may be used to determine adequacy of the prescribed feedings and/or treatment, to determine necessary changes to the feedings and/or treatment, and to set standards for the patient or to a patient group.
  • the device may provide continuous infusion of chemotherapy agents directly to organ systems, such as low, continuous flow of fluid to the organ systems.
  • the device may be placed externally in a wearable configuration with access to the affected organ through an installed port, or the device may be placed or implanted surgically for direct organ access, and may be combined with other fluid reservoirs and delivery devices. such as a subcutaneous catheter or its equivalent.
  • the device may facilitate the process of peritoneal dialysis.
  • the device in aspects, may eliminate the need for an IV pole and gravity delivered peritoneal dialysis fluids. Accordingly, the device may facilitate the development and use of wearable and other mobile peritoneal dialysis systems.
  • the present system comprises a pumping mechanism, a fluid reservoir, a controller, and a wearable garment designed to house the aforementioned components of the system.
  • System embodiments discussed herein are configured in hardware, software, and/or user interface components, such as a display screen, configured to receive input, instructions, and/or data, which may then be accepted, rejected, or manipulated by the user, caregiver, or practitioner to deliver formula at proper operating criteria, including standard criteria or specific criteria for the particular user.
  • the system may be capable of communicating with a remote electronic device, such as, by way of non-limiting example, a smartphone, computer, server, or the cloud, so that information may be input or reviewed on or by the remote electronic device.
  • Some embodiments may link the system to a smart device, computer, laptop, server, smart watch, or other electronic device associated with the user, caregiver, and/or medical provider to provide for control of device operating parameters such as flowrate, volume to be administered, duration of administration, and scheduling of future nutritional fluid delivery.
  • the system is capable of being tailored for unidirectional delivery of enteral nutrition formula to any point of a patient's digestive tract.
  • the system comprises an enteral nutrition pump, wherein the pump is capable of providing improved portability because the pump may operate with the administration reservoir horizontally arranged in relation to the pumping mechanism.
  • the pump is capable of providing improved efficiencies because the pump may produce necessary flow rates for delivering nutrition in a smaller device footprint.
  • the immersion pumping system is capable of being used for the delivery of enteral nutrition formula to a patient through nasal, gastric, or jejunal access.
  • Foundational Technical Specifications may be as follows:
  • Pump Connection Features may be as follows:
  • Outlet Cxn ENFit Luer Lock ISO 80369-3 for example (patient side) See Tubing Diameter (Or custom at later development stages) Outlet Cxn Luer (pump side) Flange Fitting Push-fit Inlet Cxn Option 1: Integrated Disposable with Bag (bag side) Dip tube, Drain aid, Screw cap Option 2: Luer, Flange Fitting, Push Fit Inlet Cxn Luer (pump side) Flange Fitting Push-fit Tubing Inner Diameter: 3.5 mm Diameter Outer Diameter: 4 mm
  • the system may additionally comprise a second mechanism that operates to force liquid or formula into the inlet of the immersion pump to allow for multiple configurations or placements of the fluid reservoir and pump.
  • the second mechanism may include an apparatus capable of rolling the fluid reservoir over itself as the contents are delivered and/or emptied.
  • the second mechanism may also include a series of plates that sequentially compress the fluid reservoir to concentrate liquid at a front end leading to the pumping mechanism, or may include a series of plates on a track that progress during the feed overtop of the emptying fluid reservoir.
  • the system may have the ability to link patient data to an electronic medical record (EMR) containing one or more data fields of patient data associated with a particular patient for increased transparency of patient and clinician communication.
  • EMR electronic medical record
  • This data link may also assist with monitoring the patient's progress and feedings, changing the specific control information for each of the feedings, such as amount, times, and duration, treating the patient, and overall to ensure compliance with an established therapy for the client.
  • Linking to the EMR may also provide for the ability to report adverse events during feeding from the patient to the clinician, for example, to better track patient quality of life (QoL).
  • QoL patient quality of life
  • the ability to link to the EMR may also serve to replace the need for monthly, periodic, or frequent checkups required for patient nutrition care, or possibly allow for remote checkups rather than in-person checkups.
  • the system and data connection to a patient EMR may be capable of decreasing or eliminating routine visits that may be performed through a digital environment with clinically relevant information collected by the system and related software and hardware
  • Embodiments of the invention also include a computer readable medium comprising one or more computer files comprising a set of computer-executable instructions for performing one or more of the calculations, steps, processes and operations described and/or depicted herein.
  • the files may be stored contiguously or non-contiguously on the computer-readable medium.
  • Embodiments may include a computer program product comprising the computer files, either in the form of the computer-readable medium comprising the computer files and, optionally, made available to a consumer through packaging, or alternatively made available to a consumer through electronic distribution.
  • a “computer-readable medium” is a non-transitory computer-readable medium and includes any kind of computer memory such as floppy disks, conventional hard disks, CD-ROM, Flash ROM, non-volatile ROM, electrically erasable programmable read-only memory (EEPROM), and RAM.
  • the computer readable medium has a set of instructions stored thereon which, when executed by a processor, cause the processor to perform tasks, based on data stored in the electronic database or memory described herein.
  • the processor may implement this process through any of the procedures discussed in this disclosure or through any equivalent procedure.
  • files comprising the set of computer-executable instructions may be stored in computer-readable memory on a single computer or distributed across multiple computers.
  • files comprising the set of computer-executable instructions may be stored in computer-readable memory on a single computer or distributed across multiple computers.
  • a skilled artisan will further appreciate, in light of this disclosure, how the invention may be implemented, in addition to software, using hardware or firmware. As such, as used herein, the operations of the invention may be implemented in a system comprising a combination of software, hardware, or firmware.
  • Embodiments of this disclosure include one or more computers or devices loaded with a set of the computer-executable instructions described herein.
  • the computers or devices may be a general purpose computer, a special-purpose computer, or other programmable data processing apparatus to produce a particular machine, such that the one or more computers or devices are instructed and configured to carry out the calculations, processes, steps, operations, algorithms, statistical methods, formulas, or computational routines of this disclosure.
  • the computer or device performing the specified calculations, processes, steps, operations, algorithms, statistical methods, formulas, or computational routines of this disclosure may comprise at least one processing element such as a central processing unit (i.e., processor) and a form of computer-readable memory which may include random-access memory (RAM) or read-only memory (ROM).
  • the computer-executable instructions may be embedded in computer hardware or stored in the computer-readable memory such that the computer or device may be directed to perform one or more of the calculations, steps, processes and operations depicted and/or described herein.
  • Additional embodiments of this disclosure comprise a computer system for carrying out the computer-implemented method of this disclosure.
  • the computer system may comprise a processor for executing the computer-executable instructions, one or more electronic databases containing the data or information described herein, an input/output interface or user interface, and a set of instructions (e.g., software) for carrying out the method.
  • the computer system may include a stand-alone computer, such as a desktop computer, a portable computer, such as a tablet, laptop, PDA, or smartphone, or a set of computers connected through a network including a client-server configuration and one or more database servers.
  • the network may use any suitable network protocol, including IP, UDP, or ICMP, and may be any suitable wired or wireless network including any local area network, wide area network, Internet network, telecommunications network, Wi-Fi enabled network, or Bluetooth or other Near Field Communication (NFC) enabled network.
  • the computer system comprises a central computer connected to the internet that has the computer-executable instructions stored in memory that is operably connected to an internal electronic database.
  • the central computer may perform the computer-implemented method based on input and commands received from remote computers through a network communications connection such as, but not limited to, the Internet.
  • the central computer may effectively serve as a server and the remote computers may serve as client computers such that the server-client relationship is established, and the client computers issue queries or receive output from the server over a network.
  • the input/output interfaces may include a graphical user interface (GUI) which may be used in conjunction with the computer-executable code and electronic databases.
  • GUI graphical user interface
  • the graphical user interface may allow a user to perform these tasks through the use of text fields, check boxes, pull-downs, command buttons, and the like. A skilled artisan will appreciate how such graphical features may be implemented for performing the tasks of this disclosure.
  • the user interface may optionally be accessible through a computer connected to the internet. In one embodiment, the user interface is accessible by typing in an internet address through an industry standard web browser and logging into a web page. The user interface may then be operated through a remote computer (client computer) accessing the web page and transmitting queries or receiving output from a server through a network connection.
  • the system may deliver chemotherapeutic agents similar to a hepatic arterial infusion (HAI) pump.
  • HAI pump is designed to provide a continuous and constant rate of chemotherapy drugs to the liver, which allows higher doses and reduced exposure for normal cells.
  • the system may be surgically implanted for direct access to the patient system and connected to a catheter or through an adapted G-button connection for delivery directly to the liver.
  • the system may additionally be altered to sit outside of the body, rather than being surgically placed beneath the skin.
  • the device may allow for continuous, low flow rate delivery of therapeutic agents to specific organ systems over the period of days and weeks.
  • the device may facilitate better outcomes during treatment of peritoneal dialysis.
  • Peritoneal dialysis relies on the infusion of dialysis fluid into the abdomen with a suspended fluid supply and gravity driven flow.
  • the process may be facilitated by way of a portable or wearable delivery system.
  • the device may additionally provide more customization to the infusion flow rate that may maximize or optimize patient comfort, safety, and efficacy, as well as tracking, management, and control of infusion during treatment.
  • the device would allow for patients to perform their needed dialysis wherever they may be without the need, for example, to transport large, inconvenient, or cumbersome equipment.
  • the device may monitor, record, and transmit a data record of use including time and date, flow rates, volumes, and composition of the dialysate fluids.
  • the instant innovation may be used as part of a proprietary feeding delivery system with enhanced capabilities such as, by way of non-limiting example, improved visual indicators and monitoring.
  • a proprietary feeding delivery system with enhanced capabilities such as, by way of non-limiting example, improved visual indicators and monitoring.
  • Such a system facilitates patient data collection, analysis, and instrumentation of the device in numerous non-limiting ways.
  • the system herein described may permit volume and/or rate tracking and verification for empirical study and/or to confirm pump sensor readings for total system performance.
  • the system permits occlusion detection within the access device, providing data separate from pump system occlusion detection and applicable for users that are non-pump feeders.
  • the device may incorporate communication capabilities utilizing fiber optic transmission cables for rapid transmission of information, one or more optical sensors for recognizing sediment, biofilms and residue buildup in the lumen of the device, and/or one or more sensors for attachment recognition.
  • Such attachment recognition sensors may provide, among other non-limiting functions, automatic feed initiation upon connection, automatic teed cessation upon disconnection, and/or a pre-configured flow rate making possible initial rapid priming and then switching to a patient-specific low flow rate as customized for a particular user or group of users.
  • the system utilizes visual indicators and a related user interface incorporating both light indicators visible through an external bolster and color changing Stoma Liner materials. Such color change may be used to indicate the presence of inflammation or an infectious event, or the presence of Gastric Leakage.
  • a light pipe and/or fiber optic design is relied upon to send light signals to a Personal Alert Safety System (PASS) device, and back.
  • PASS Personal Alert Safety System
  • the instant innovation offers the convenience of instant pump priming. Due to the device pump's immersion and/or direct linear connection in a fluid feed, a user may prime the pump of the instant innovation while the feeding device is connected to a patient. This one-step process provides convenience and removes user error from a device requiring pump priming prior to device connection to a patient.
  • device attachment between the Stoma Liner and the Patient is enhanced by use of Stoma. Liners fitted in multiple sizes from 8Fr-26Fr, with adaptable configurations to make a tight seal.
  • Each Stoma Liner has one or more low profile inner and outer bladders that may be inflated if the device fit needs further securement.
  • Device attachment between the Stoma Liner and the Access Device is enhanced by use of the bladders on the interior lumen of the Stoma Liner device that may be inflated and/or deflated to grip a variety of pinch points along the Access Device.
  • the Stoma Liner bladders have rigid tips that engage “female” attachment points on the stem of the Access Device. These female attachment points are characterized by slight rigid indentation to “accept” the tips located on the Stoma Liner bladders.
  • the Access Device has a slightly flared bottom for extra attachment security.
  • a user may have a G-button connection point installed through the skin and the organ membrane, where the organ may be the stomach, upper intestine, lower intestine, or other bodily membrane.
  • the G-button connection may provide a secure connection point for the enteral feeding system that does not depend upon the use of bladders inflated within the stomach or intestine for securing the connection point for the enteral feeding system.
  • the instant innovation incorporates a super-hydrophobic inner coating to limit the build-up of formula, medication, particulate, or other extraneous material.
  • a super-hydrophobic inner coating to limit the build-up of formula, medication, particulate, or other extraneous material.
  • Such coating reduces the frequency with which the device cavities need be flushed with water.
  • the device incorporates outer coatings suitable to enhance cleanliness and long-life, such as, by way of non-limiting example, those with silver nitrate, chlorhexidine silver, and/or licensed BlueGuard technology.
  • the instant innovation may be introduced to a patient by one or more procedures replacing typical surgical, endoscopic, or radiological procedures.
  • Such one or more procedures benefit from the availability of a handheld surgical instrument that is preloaded with sutures or staples and used to secure a primary device (PASS) in-situ, adhering the stomach lining and abdominal wall in the process.
  • PASS primary device
  • Such instrument deploys the necessary suture and/or staple arrangement to secure the device in-situ with one trigger pull.
  • the procedure may be concluded with necessary following steps such as, by way of non-limiting example, application of bandages or disinfectant or device operational testing.
  • the instant innovation may be utilized to facilitate other cross-tissue or cross-membrane fluid transfer such as acting as, by way of non-limiting example, a Central Line Access Portal for long term access for infusions, enabling Dialysis through shunt placement, fistula formation, central line dialysis, and/or peritoneal dialysis, enabling Chemotherapy as a hyperport access; acting as a Hydrocephalus shunt, and permitting Colostomy applications, including ostomy implant, among many other possible applications.
  • a Central Line Access Portal for long term access for infusions
  • enabling Dialysis through shunt placement, fistula formation, central line dialysis, and/or peritoneal dialysis enabling Chemotherapy as a hyperport access
  • acting as a Hydrocephalus shunt acting as a Hydrocephalus shunt
  • Colostomy applications including ostomy implant, among many other possible applications.
  • the instant innovation may be used in veterinary medical applications to a similar or greater extent than that to which it is used in human applications. Indeed, the instant innovation may be used in any medical or non-medical application requiring penetration and throughput of a flexible membrane or tissue.
  • FIG. 1 a view of the device in-situ upon a patient's torso consistent with certain embodiments of the present invention is shown.
  • a belt-mounted nutrient reservoir, electronic control panel, motor, pump, and cross-cutaneous access point assembly removably attached across a patient's midsection.
  • FIG. 2A a partially exploded front view of the device consistent with certain embodiments of the present invention is shown.
  • a nutrient reservoir which connects to disposable pump head 210 by operation of Inlet Connection 208 .
  • Flow of enteral nutrition from a nutrient fluid reservoir 202 is affected and metered by electrical control 204 .
  • Electrical control 204 may include a reusable pump motor (not shown).
  • Outlet Connection 212 connects the patient-proximal end of pump head 210 through ring 206 to patient cross-cutaneous access point (not shown).
  • FIG. 2B a rear view of the device consistent with certain embodiments of the present invention is shown.
  • the assembly of FIG. 2A is shown from the side of the assembly intended to be worn against a user's body.
  • the disposable pump head 210 is seated within a pump housing 220 , which may be configured for insertion of the pump head 210 to securely hold the pump head 210 in place during fluid transfer operations.
  • the electrical and control housing 222 may be placed in contact with the wearer when the system is worn by the user.
  • Elevated ring 302 may be made of a wide variety of suitable materials including but not limited to nylon, plastic, and/or metal. Choice of material for elevated ring 302 may be based in whole or in part upon strength, use, and cleanliness considerations.
  • Soft ring 306 may be made of a wide variety of suitable materials including but not limited to fabric, cloth, and/or foam. Choice of material for soft ring 306 may be based in whole or in part upon strength, use, and cleanliness considerations.
  • FIG. 3C a third detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention is shown.
  • the belt assembly through which is threaded pump head assembly 310 .
  • At 312 is a loop-and-hook-fastenable patch capable of being removably positioned from a first position not in contact with belt assembly 308 to a second position affirmatively in contact with belt assembly 308 .
  • FIG. 4 several smart-device-integrated user experiences consistent with certain embodiments of the present invention are shown.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Reciprocating Pumps (AREA)

Abstract

The embodiments herein are directed to a portable liquid delivery system that incorporates an immersion driving pump mechanism(s), an administration reservoir, a user interface, and a wearable and/or portable accessory. The wearable accessory serves to house the components of the system and is to be worn on the user's body. In some cases, the system may be used to deliver nutritional formula for the treatment of patients on an enteral nutrition regimen.

Description

    CLAIM TO PRIORITY
  • This Non-Provisional application claims under 35 U.S.C. § 120, the benefit as of the Provisional Application 63/081,111, filed Sep. 21, 2020, Titled “Wearable Fluid Delivery System” which is hereby incorporated by reference in its entirety.
  • COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • BACKGROUND
  • Enteral nutrition, or tube feeding, is a process that delivers nutrition directly to the stomach or small intestine in place of traditional oral feeding. If a patient is receiving treatment outside of a hospital setting, the process is referred to as Home Enteral Nutrition (HEN). A 2013 study indicates that as many as 250,000 adults and 190,000 children currently require HEN as a part of their medical treatment in the United States. Currently, the leading conditions that indicate a need for HEN include cancer, nonmalignant respiratory disease, and neurological disorders. Enteral nutrition currently requires an array of medical resources and technologies including doctor assessment, a nutrition plan prescribed by a nutrition support team, a surgically implanted gastrostomy tube, a delivery system, tubing sets, and a nutritional formula.
  • Medical patients for whom oral feeding is not allowable or sufficient commonly benefit from prescribed enteral nutrition. This form of therapy delivers nutrition directly to a patient's gastrointestinal tract (GI) through man-made tubes that are placed into the GI tract. In order to access any portion of the patient's GI tract, the placed tubes must enter the patient's body through incisions created in the patient's abdominal wall or through existing body cavities such as the nasal cavity.
  • The distal end of any such tube is placed in the GI tract, while the proximal end of any such tube remains outside of the patient's body, permitting the proximal end to interface with enteral nutrition delivery technology. Surgically implanted tubes are generally indicated for long-term enteral nutrition needs while nasally placed tubes are indicated for short-term (less than two months) needs or when a patient is not healthy enough to tolerate surgery. Commonly, gastrostomy tubes are placed one of three ways: (1) surgically, through an open procedure or laparoscopically, (2) endoscopically, or (3) radiologically with a percutaneous insertion procedure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Certain illustrative embodiments illustrating organization and method of operation, together with objects and advantages may be best understood by reference to the detailed description that follows taken in conjunction with the accompanying drawings in which:
  • FIG. 1 is a view of the device in-situ upon a patient's torso consistent with certain embodiments of the present invention.
  • FIG. 2A is a partially exploded front view of the device consistent with certain embodiments of the present invention.
  • FIG. 2B is a rear view of the device consistent with certain embodiments of the present invention.
  • FIG. 3A is a first detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 3B is a second detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 3C is a third detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention.
  • FIG. 4 illustrates several smart-device-integrated user-experiences consistent with certain embodiments of the present invention.
  • DETAILED DESCRIPTION
  • While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure of such embodiments is to be considered as an example of the principles and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
  • The terms “a” or “an”, as used herein, are defined as one or more than one. The term “plurality”, as used herein, is defined as two or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language).
  • Reference throughout this document to “one embodiment”, “certain embodiments”, “an embodiment” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
  • It is noted in particular that where a range of values is provided in this specification, each value between the upper and lower limits of that range is also specifically disclosed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range as well.
  • Reference herein to “Disposable Pump Head” refers to a single use pump (such as, by way of non-limiting example, Quantex CS-6) that is indicated for a set volume of use and then thrown away.
  • Reference herein to “Pump Tubing” refers to all necessary tubing to connect a nutrient reservoir to a disposable pump head, and the disposable pump head to a patient access device. This may include the proprietary “enFit” adaptor to connect directly to the patient's access device, such as, by way of non-limiting example, Gastrostomy button (G-button), but may simply be a standard connection to interface with an extension set that would then connect to patient's access device.
  • Reference herein to “Nutrient Reservoir” refers to a container that is used to hold enteral nutritional formula and deliver contents to the disposable pump head through the pump tubing. This container may come pre-filled and ready to directly insert into the proprietary “enLumin” system, or may come as a reusable and refillable container.
  • Reference herein to “Inlet Cxn” refers to the tubing that connects the nutrient reservoir to the disposable pump head.
  • Reference herein to “Outlet Cxn” refers to the tubing that connects the disposable pump head to the patient's access device or extension set.
  • The present invention is directed to an enteral nutrition system. Malnutrition and dysphagia are increasing, especially in chronic disease patients and elderly people. The occurrence of malnutrition is high in patients with chronic illnesses like cancer, neurological disorders, heart failure, and COPD, and increases with age as well. The prevalence of various cancers, especially gastric, head and neck/throat, and esophageal cancers, is growing globally, correlating to a rise in the need for enteral feeding in some oncology patients. Also, there is an increase in new markets where enteral feeding is playing a role for the first time. These include areas such as sports medicine and athletic training, pregnant women who suffer from hyperemesis gravidarum, and treatment for bulimia/anorexia conditions.
  • Despite the fact that many of the manufacturers of enteral feeding pumps claim that their equipment is designed to be portable, the current methods for HEN mobility are an afterthought in the form of inadequate, over-priced backpacks. Although backpacks appear to provide patients with increased mobility, treatments often fail when the pump is not positioned on an IV stand with a stationary patient. Mechanical failures of the device may also occur, and may include the occlusion of tubing as a result of kinking or viscous formula and/or the malalignment of the feeding bag in the backpack causing flow to be interrupted. As a result of these mobility issues during feeds, it is estimated that the average person is required to sit at least 3 hours per day to reach their required nutrition.
  • Accordingly, the need exists for an improved portable enteral nutrition system. In an embodiment, the innovative system herein described may comprise an in-line or immersion pump, an innovative administration reservoir, and a wearable housing that facilitates simplified portable feeding. The instant innovation allows the patient full or near-full mobility as nutritive fluids are administered. In this way, a patient may find the product useful in their everyday life, as it may grant them autonomy by untethering them from a pole and machine that requires them to be immobile a good portion of the day. In addition, the system is a safer alternative than existing solutions because it takes away the risk of having tension applied to the extra slack of tubing, a situation which may cause problems with safety and efficacy.
  • The present invention is directed to an enteral nutrition system comprising an immersion fluid/nutrition driving mechanism, an administration reservoir, an electronic control and communication element, and a portable housing or accessory designed to contain the aforementioned components of the system. In an embodiment, the nutrition driving mechanism, in aspects, may include: a physical mechanism for sustained supply of liquid at a pump inlet; a device-specific attachment for securement to a wearable garment; direct or indirect connection to smart devices for communication with a controller and data collection; and associated sensors for detection of pump occlusions, priming completion, and liquid volume recording capabilities.
  • In an embodiment, the administration reservoir comprises a secure attachment to the wearable garment. In aspects, the enteral feeding device wraps around a patient's midsection and connects directly to a surgically implanted gastrostomy tube. A food pouch is capable of being inserted into the food reservoir section on the front of the wrap and a rolling mechanism pushes food to the feeding pump which then delivers the food directly into the patient's stomach or intestine. The rate of feeding may be wirelessly controlled by a mobile application in communication with the electronic control and communication element. Sensors embedded within the wrap may also be capable of monitoring vitals like heart rate, which may also be tracked/monitored via a mobile application.
  • In further embodiments, the present invention is directed at an immersion pumping system for the delivery of enteral nutrition formula to a patient through nasal, gastric, or jejunal access.
  • In an embodiment, the present invention is directed to an enteral nutrition device, wherein the fluid driver is capable of providing improved efficiencies because the pump may produce necessary flow rates for delivering nutrition in a smaller device footprint. The present invention may be comprised of a system with one or more pumping mechanisms to deliver fluid to a patient. In a non-limiting example, the present invention may be directed to an enteral nutrition device, wherein the fluid driver is capable of providing improved portability because the system may operate with the administration reservoir horizontally arranged with respect to the pumping mechanism.
  • In an embodiment, the instant system may facilitate access and control by prescribing physicians and home health departments within large hospital systems. Prescribing physicians may be provided with access to synchronous or near-synchronous communication with the electronic communication element, providing insights into the home feeding environment and functioning of the system. These insights may include information regarding tracking features and processing utilizing one or more Machine Learning algorithms to assist with changes to the system and treatment. In a non-limiting example, doctors may have the ability to make informed decisions and identify inconsistencies between prescribed care and observed results when reviewing tracking data and analysis information from the enteral feeding system. From a home health perspective, the system may assist with and guide troubleshooting processes as a result of smartphone or computer connectivity granting remote access and control to the user, caregivers, and/or medical providers. Furthermore, the improved system and device may provide increased product life spans as a result of the portable design mitigating accidental damages due to user error or dropping hazards.
  • Regarding end-user patients, the system allows enhanced autonomy over patient feeds by having the ability to be ambulatory as they are using the device and system. The portable and ambulatory nature of the system may eliminate or nearly-eliminate a need for gravity-fed feeds, which allows the patient the freedom to receive a feeding without being tethered to a stand. In addition, the wearable capability of the enteral feeding system may eliminate the need for extra tubing, which may be a tripping hazard and cause the tubing, fitted to the stomach in typical situations, to be ripped from the abdomen.
  • In an embodiment, the enteral feeding system may be relatively quiet, have long battery life, and be capable of low heat generation. The system may provide for the capability of connectivity with existing G-tubes, J-tubes, and even GJ-tubes, or related technologies.
  • In an embodiment, the nutrition inlet device may provide a housing or container for a pouch capable of allowing insertion of nutrition products that are delivered at a controllable rate through the inlet via the pump device. The enteral feeding system may be integrated and communicate with a smart phone application or other control application. This integration and communication capability permits the system to track fluid intake and feed times, provide notifications and other communications, and provides the ability to share data with caregivers, including a medical provider/physician/nurse/caregiver/family member. In an embodiment, the system may eliminate the difficult setup and manual priming actions currently required by patients, thus reducing the burden of effort required to initiate each feeding session. The device may also have a sufficiently low profile when being worn by a user that the system as a whole may be difficult to see, recognize, identify, or perceive by an outside observer.
  • In an embodiment, the enteral feeding system may be configured for prolonged delivery of nutritional formula during ambulation. The system may include one or more devices and components including, but not limited to, a housing containment garment configured to be worn on the body of the user, a pumping mechanism such as, in a non-limiting example, an immersion pump, an electronic command and control device, and an administration reservoir.
  • In an embodiment, a system is provided that may be configured for the delivery of a medical fluid, including a medication or other therapeutic fluid, for the treatment of a patient condition for a specified duration of time, for a particular time or treatment, or for a specific and controllable rate of delivery. In a non-limiting example, the system may be used by oncology patients that undergo continuous home infusion chemotherapy that share many of the treatment, safety, efficacy, and quality of life issues that enteral nutrition patients experience.
  • In an embodiment of the present invention, the system is capable of providing customized or standardized delivery of a nutritional formula configured in a system capable of being worn by the user. The system may include a garment worn on the body of the user, a pumping mechanism, a nutrient or fluid reservoir, and wireless or wired communication with an integrated computer or communication system/device (including, by way of non-limiting example, a smartphone, a computer, a computer processing user, and/or the cloud) which is capable of communicating with interested parties including but not necessarily limited to, the user, a relative of the user, caregiver, and/or a health care provider. In an embodiment, the device is capable of alerting the user or a health care provider with information related to the system, patient/user, treatment, device, fluid, or other aspects related to the system and system capabilities. In a non-limiting example, alarms or alerts may be transmitted to a smartphone, computer, server, the cloud, or other remote electronic device. In a particular embodiment, the alarms or alerts may be delivered to a user via haptic feedback or may be visual, auditory, or textual in nature.
  • In an embodiment, the present innovation may be an enteral nutrition feeding system including an immersion or in-line pumping mechanism, a fluid reservoir, a controller, and a wearable garment configured to contain the components of the system including but not limited to a pumping mechanism, the fluid reservoir, and control and communication electronics. In an embodiment, the pumping mechanism may include an apparatus capable of sustainably supplying a fluid at the pumping mechanism inlet, an attachment configured to secure the wearable garment to a user, a wireless or wired connection to an electronic device configured to communicate with the controller, the electronic control and communication apparatus, and one or more sensors for detecting one or more of pump occlusion, priming completion, liquid volume, and amount of liquid delivered. The control electronics may be active to collect and store all data related to fluid delivery, fluid volume, feeding schedule, and information displayed and relayed to a user, caregiver, and/or medical professional.
  • In an embodiment, the instant innovation includes a fluid reservoir for holding enteral nutrition fluids or other fluids as required by user needs, that is worn in a belt or other wearable device external to a patient. The electronic command and control device for administering the enteral nutrition fluid via a pump is integrated into the belt or other wearable device. The instant innovation includes a drive motor operative to affect the action of a disposable pump for administration of the fluid. In an embodiment the drive motor is contained in the belt or other wearable device and as such does not become soiled by contact with the fluid passing from the fluid reservoir to the user. In an embodiment the disposable pump connects the reservoir of fluid to a G-button or similar cross-cutaneous mechanical connector.
  • In an embodiment the instant innovation may be used for Intermittent Infusions. This would include infusions up to 4 hours long for patients that may be able to tolerate higher flow rates during their feeds. These individuals would be able to charge their devices between use, if constrained by battery life.
  • In an embodiment the instant innovation may be used for Continuous Infusions. These may be appropriate for individuals that may be attached to a feeding machine for 12-24 hours per day. Such use typically involves very low flow rates (below about 150 ml/hr) and supplies all hydration and nutrition needs for a single patient. These patients would require replaceable batteries or larger batteries to accommodate battery usage of up to 18 hours per day.
  • In an embodiment the instant innovation may be used for Night Feeds. These may include feedings for any user that requires infusions during their sleep to reach a certain level of nutrition. These users may also use low flow rates (below about 150 ml/hr) and would ideally benefit from a battery life that would not require a wired connection for the overnight infusion.
  • In an embodiment the instant innovation may incorporate disposable elements into an integrated system. In an embodiment, a disposable pump head, pump tubing, and a pre-filled fluid reservoir may be replaced after each feeding. In an embodiment, the pre-filled fluid reservoir may be replaced after each feeding and the disposable pump head and pump tubing may be replaced after each day's feedings, or, optionally, after each use of the system. In an embodiment, each of the disposable pump head, pump tubing, and reusable fluid reservoir may be replaced after each day's feedings. In this embodiment, the fluid reservoir may be pre-filled with any fluid, such as, in non-limiting examples, nutrient fluids, medications, or other therapeutic fluids, that may be pumped from the fluid reservoir through the pump for delivery to the user.
  • In an embodiment of the system, a wearable garment may be configured to assist with a method of mobile fluid infusion, including, for example, the administration of therapeutic agents for medical purposes. In aspects, the system may use an immersion pumping mechanism placed against the abdomen to deliver fluid to a patient. The pumping mechanism may have components capable of removal for cleaning. The components may include a removable cartridge with built-in tubing, a removable top cap for troubleshooting, maintenance, and cleaning purposes, a removable portion of the pumping mechanism, and/or a disposable rotor for the pumping mechanism.
  • In an embodiment, the fluid reservoir may include one-way valve or two-way valves designed for refilling nutritional formula or other liquids into the fluid reservoir. In an embodiment, the fluid reservoir may include a specialized connection to the driving mechanism and/or it may include two specialized connections to two fluid driving mechanisms for delivery of the fluid from the fluid reservoir to the user. More specifically, the present system may include two driving mechanisms, such as a pump and a compressive rolling mechanism for the sustained delivery of nutrition, or the system may include two driving mechanisms, such as a pump and a pressurized compression system for the sustained delivery of fluids from the fluid reservoir.
  • In an embodiment, the portable housing may be configured to include a compression wrap garment that may be worn on the abdomen, back, or other body part of the user, wherein the housing would be capable of custom or standardized connections between the pumping mechanism(s) and the fluid reservoir. The housing may also be capable of facilitating connection of the system to the patient's surgical G-button connector, or other access site.
  • In a particular embodiment, the invention may include a portable nutrition delivery system that is less than 10 pounds, less than 9 pounds, less than 8 pounds, less than 7 pounds, less than 6 pounds, less than 5 pounds, and so on. In a particular embodiment, the volume of the device may be less than 1000 cm3, less than 900 cm3, less than 800 cm3, less than 700 cm3, less than 600 cm3, less than 500 cm3, and so on.
  • In an embodiment the device may include pre-programmed settings for the delivery of fluids such as nutritional fluids for feeding, including feeding times, frequency, speed, duration, and other settings, although the settings may be manually controlled in real-time by a user, caregiver, or medical provider. The programmed settings may be accessed, set, or changed by a user, caregiver, or medical provider, including in real-time and/or remotely. In a particular embodiment, a plurality of pre-programmed settings may be created for fluid delivery to a user. In a non-limiting example, 5 pre-programmed settings may be created to provide options for different types of feeding treatments as a standard configuration, however, this should in no way be considered limiting as other pre-programmed settings configurations may be created to provide customized fluid delivery programming.
  • In an embodiment, the device may track trends of feeding including volume delivered, calories delivered, duration of nutrition fluid delivery per feeding episode, time of feeding, number of daily, weekly, or monthly feeds. In an embodiment, a Machine Learning algorithm may analyze collected data from each user, or from groups of users having similar characteristics, to determine changes to the pre-established and pre-programmed feeding session settings or to determine when fluid delivery parameters have changed sufficiently to create an alert that is transmitted to a user, caregiver, or medical provider. The trend analysis may be used to determine adequacy of the prescribed feedings and/or treatment, to determine necessary changes to the feedings and/or treatment, and to set standards for the patient or to a patient group.
  • In an embodiment, the device may provide continuous infusion of chemotherapy agents directly to organ systems, such as low, continuous flow of fluid to the organ systems. The device may be placed externally in a wearable configuration with access to the affected organ through an installed port, or the device may be placed or implanted surgically for direct organ access, and may be combined with other fluid reservoirs and delivery devices. such as a subcutaneous catheter or its equivalent.
  • In an embodiment, the device may facilitate the process of peritoneal dialysis. The device, in aspects, may eliminate the need for an IV pole and gravity delivered peritoneal dialysis fluids. Accordingly, the device may facilitate the development and use of wearable and other mobile peritoneal dialysis systems.
  • In an embodiment, the present system comprises a pumping mechanism, a fluid reservoir, a controller, and a wearable garment designed to house the aforementioned components of the system. System embodiments discussed herein are configured in hardware, software, and/or user interface components, such as a display screen, configured to receive input, instructions, and/or data, which may then be accepted, rejected, or manipulated by the user, caregiver, or practitioner to deliver formula at proper operating criteria, including standard criteria or specific criteria for the particular user. The system may be capable of communicating with a remote electronic device, such as, by way of non-limiting example, a smartphone, computer, server, or the cloud, so that information may be input or reviewed on or by the remote electronic device. Some embodiments may link the system to a smart device, computer, laptop, server, smart watch, or other electronic device associated with the user, caregiver, and/or medical provider to provide for control of device operating parameters such as flowrate, volume to be administered, duration of administration, and scheduling of future nutritional fluid delivery. The system is capable of being tailored for unidirectional delivery of enteral nutrition formula to any point of a patient's digestive tract.
      • In embodiments, software application data may include:
  • TABLE A
    Static Patient Data EN Prescription
    Formula
    Calories
    Volume
    Schedule
    Medication Prescription
    Name
    Dose
    Schedule
    Clinical EN Provider
    Contact Clinician
    Choice to Sync with EMR
    Settings
    Alarms
    App Settings
    App Notifications
    Other
    Saved/Favorite Feed Rates
    Username
    Password
    Daily Patient Data Calories Consumed
    (To Be Synced with Volume Consumed
    EMR if Chosen) Number of Feeds
    Length of Feed Time
    Journal
    Weight (not yet added)
    DeviceData Device Connected to Smartphone
    Device Type
    Device Battery
    Feed Session Session is not active, currently
    Status Data running, paused or stopped
    Time Remaining in session
    Volume Remaining in session
    Session Feed Rate
  • Specifically, in embodiments, the system comprises an enteral nutrition pump, wherein the pump is capable of providing improved portability because the pump may operate with the administration reservoir horizontally arranged in relation to the pumping mechanism. In embodiments, the pump is capable of providing improved efficiencies because the pump may produce necessary flow rates for delivering nutrition in a smaller device footprint. Further, the immersion pumping system is capable of being used for the delivery of enteral nutrition formula to a patient through nasal, gastric, or jejunal access.
  • In an embodiment, Foundational Technical Specifications may be as follows:
  • TABLE 1
    Rate Maximum: 1000 milliliters per hour
    Intended: 1.00-600 milliliters per hour
    Resolution <1.00 milliliters
    Accuracy +/− 5%, or 0.5 ml/hr (whichever larger)
    Capacity High Output: 1500 milliliters (volume
    allowed per pump head)
    Intended: 1000 milliliters
    Fluid High Output: 1000 cP
    Viscosity Intended: 1-200 cP
    Priming Autonomous, self-priming
    *Battery Life:
    This is a low-end specification for the desired lifespan of a driver. Continuous users may at some points require about 60-150 ml/hr for up to 24 hours per day. Satisfying this particular need may be solved using a separately designed driver, or a replaceable battery configuration.
  • In an embodiment, Pump Connection Features may be as follows:
  • TABLE 2
    Outlet Cxn ENFit Luer Lock (ISO 80369-3) for example
    (patient side) See Tubing Diameter
    (Or custom at later development stages)
    Outlet Cxn Luer
    (pump side) Flange Fitting
    Push-fit
    Inlet Cxn Option 1: Integrated Disposable with Bag
    (bag side) Dip tube, Drain aid, Screw cap
    Option 2: Luer, Flange Fitting, Push Fit
    Inlet Cxn Luer
    (pump side) Flange Fitting
    Push-fit
    Tubing Inner Diameter: 3.5 mm
    Diameter Outer Diameter: 4 mm
  • In an embodiment, the system may additionally comprise a second mechanism that operates to force liquid or formula into the inlet of the immersion pump to allow for multiple configurations or placements of the fluid reservoir and pump. The second mechanism may include an apparatus capable of rolling the fluid reservoir over itself as the contents are delivered and/or emptied. The second mechanism may also include a series of plates that sequentially compress the fluid reservoir to concentrate liquid at a front end leading to the pumping mechanism, or may include a series of plates on a track that progress during the feed overtop of the emptying fluid reservoir.
  • In an embodiment, the system may have the ability to link patient data to an electronic medical record (EMR) containing one or more data fields of patient data associated with a particular patient for increased transparency of patient and clinician communication. This data link may also assist with monitoring the patient's progress and feedings, changing the specific control information for each of the feedings, such as amount, times, and duration, treating the patient, and overall to ensure compliance with an established therapy for the client. Linking to the EMR may also provide for the ability to report adverse events during feeding from the patient to the clinician, for example, to better track patient quality of life (QoL). The ability to link to the EMR may also serve to replace the need for monthly, periodic, or frequent checkups required for patient nutrition care, or possibly allow for remote checkups rather than in-person checkups. The system and data connection to a patient EMR may be capable of decreasing or eliminating routine visits that may be performed through a digital environment with clinically relevant information collected by the system and related software and hardware.
  • Embodiments of the invention also include a computer readable medium comprising one or more computer files comprising a set of computer-executable instructions for performing one or more of the calculations, steps, processes and operations described and/or depicted herein. In exemplary embodiments, the files may be stored contiguously or non-contiguously on the computer-readable medium. Embodiments may include a computer program product comprising the computer files, either in the form of the computer-readable medium comprising the computer files and, optionally, made available to a consumer through packaging, or alternatively made available to a consumer through electronic distribution. As used in the context of this specification, a “computer-readable medium” is a non-transitory computer-readable medium and includes any kind of computer memory such as floppy disks, conventional hard disks, CD-ROM, Flash ROM, non-volatile ROM, electrically erasable programmable read-only memory (EEPROM), and RAM. In exemplary embodiments, the computer readable medium has a set of instructions stored thereon which, when executed by a processor, cause the processor to perform tasks, based on data stored in the electronic database or memory described herein. The processor may implement this process through any of the procedures discussed in this disclosure or through any equivalent procedure.
  • In an embodiment of the invention, files comprising the set of computer-executable instructions may be stored in computer-readable memory on a single computer or distributed across multiple computers. A skilled artisan will further appreciate, in light of this disclosure, how the invention may be implemented, in addition to software, using hardware or firmware. As such, as used herein, the operations of the invention may be implemented in a system comprising a combination of software, hardware, or firmware.
  • Embodiments of this disclosure include one or more computers or devices loaded with a set of the computer-executable instructions described herein. The computers or devices may be a general purpose computer, a special-purpose computer, or other programmable data processing apparatus to produce a particular machine, such that the one or more computers or devices are instructed and configured to carry out the calculations, processes, steps, operations, algorithms, statistical methods, formulas, or computational routines of this disclosure. The computer or device performing the specified calculations, processes, steps, operations, algorithms, statistical methods, formulas, or computational routines of this disclosure may comprise at least one processing element such as a central processing unit (i.e., processor) and a form of computer-readable memory which may include random-access memory (RAM) or read-only memory (ROM). The computer-executable instructions may be embedded in computer hardware or stored in the computer-readable memory such that the computer or device may be directed to perform one or more of the calculations, steps, processes and operations depicted and/or described herein.
  • Additional embodiments of this disclosure comprise a computer system for carrying out the computer-implemented method of this disclosure. The computer system may comprise a processor for executing the computer-executable instructions, one or more electronic databases containing the data or information described herein, an input/output interface or user interface, and a set of instructions (e.g., software) for carrying out the method. The computer system may include a stand-alone computer, such as a desktop computer, a portable computer, such as a tablet, laptop, PDA, or smartphone, or a set of computers connected through a network including a client-server configuration and one or more database servers. The network may use any suitable network protocol, including IP, UDP, or ICMP, and may be any suitable wired or wireless network including any local area network, wide area network, Internet network, telecommunications network, Wi-Fi enabled network, or Bluetooth or other Near Field Communication (NFC) enabled network. In one embodiment, the computer system comprises a central computer connected to the internet that has the computer-executable instructions stored in memory that is operably connected to an internal electronic database. The central computer may perform the computer-implemented method based on input and commands received from remote computers through a network communications connection such as, but not limited to, the Internet. The central computer may effectively serve as a server and the remote computers may serve as client computers such that the server-client relationship is established, and the client computers issue queries or receive output from the server over a network.
  • The input/output interfaces may include a graphical user interface (GUI) which may be used in conjunction with the computer-executable code and electronic databases. The graphical user interface may allow a user to perform these tasks through the use of text fields, check boxes, pull-downs, command buttons, and the like. A skilled artisan will appreciate how such graphical features may be implemented for performing the tasks of this disclosure. The user interface may optionally be accessible through a computer connected to the internet. In one embodiment, the user interface is accessible by typing in an internet address through an industry standard web browser and logging into a web page. The user interface may then be operated through a remote computer (client computer) accessing the web page and transmitting queries or receiving output from a server through a network connection.
  • In an embodiment, the system may deliver chemotherapeutic agents similar to a hepatic arterial infusion (HAI) pump. A HAI pump is designed to provide a continuous and constant rate of chemotherapy drugs to the liver, which allows higher doses and reduced exposure for normal cells. The system may be surgically implanted for direct access to the patient system and connected to a catheter or through an adapted G-button connection for delivery directly to the liver. The system may additionally be altered to sit outside of the body, rather than being surgically placed beneath the skin. In a non-limiting example, the device may allow for continuous, low flow rate delivery of therapeutic agents to specific organ systems over the period of days and weeks.
  • In an embodiment, the device may facilitate better outcomes during treatment of peritoneal dialysis. Peritoneal dialysis relies on the infusion of dialysis fluid into the abdomen with a suspended fluid supply and gravity driven flow. Through the employment of the proposed device, the process may be facilitated by way of a portable or wearable delivery system. The device may additionally provide more customization to the infusion flow rate that may maximize or optimize patient comfort, safety, and efficacy, as well as tracking, management, and control of infusion during treatment. In aspects, the device would allow for patients to perform their needed dialysis wherever they may be without the need, for example, to transport large, inconvenient, or cumbersome equipment. Further, the device may monitor, record, and transmit a data record of use including time and date, flow rates, volumes, and composition of the dialysate fluids.
  • In an embodiment the instant innovation may be used as part of a proprietary feeding delivery system with enhanced capabilities such as, by way of non-limiting example, improved visual indicators and monitoring. Such a system facilitates patient data collection, analysis, and instrumentation of the device in numerous non-limiting ways.
  • In an embodiment, the system herein described may permit volume and/or rate tracking and verification for empirical study and/or to confirm pump sensor readings for total system performance. The system permits occlusion detection within the access device, providing data separate from pump system occlusion detection and applicable for users that are non-pump feeders. In an embodiment the device may incorporate communication capabilities utilizing fiber optic transmission cables for rapid transmission of information, one or more optical sensors for recognizing sediment, biofilms and residue buildup in the lumen of the device, and/or one or more sensors for attachment recognition. Such attachment recognition sensors may provide, among other non-limiting functions, automatic feed initiation upon connection, automatic teed cessation upon disconnection, and/or a pre-configured flow rate making possible initial rapid priming and then switching to a patient-specific low flow rate as customized for a particular user or group of users.
  • In an embodiment the system utilizes visual indicators and a related user interface incorporating both light indicators visible through an external bolster and color changing Stoma Liner materials. Such color change may be used to indicate the presence of inflammation or an infectious event, or the presence of Gastric Leakage. In an embodiment a light pipe and/or fiber optic design is relied upon to send light signals to a Personal Alert Safety System (PASS) device, and back.
  • In an embodiment, the instant innovation offers the convenience of instant pump priming. Due to the device pump's immersion and/or direct linear connection in a fluid feed, a user may prime the pump of the instant innovation while the feeding device is connected to a patient. This one-step process provides convenience and removes user error from a device requiring pump priming prior to device connection to a patient.
  • In an embodiment, device attachment between the Stoma Liner and the Patient is enhanced by use of Stoma. Liners fitted in multiple sizes from 8Fr-26Fr, with adaptable configurations to make a tight seal. Each Stoma Liner has one or more low profile inner and outer bladders that may be inflated if the device fit needs further securement. Device attachment between the Stoma Liner and the Access Device, such as an Enteral Feeding Device, is enhanced by use of the bladders on the interior lumen of the Stoma Liner device that may be inflated and/or deflated to grip a variety of pinch points along the Access Device. In such embodiment, the Stoma Liner bladders have rigid tips that engage “female” attachment points on the stem of the Access Device. These female attachment points are characterized by slight rigid indentation to “accept” the tips located on the Stoma Liner bladders. The Access Device has a slightly flared bottom for extra attachment security.
  • In an alternative embodiment, a user may have a G-button connection point installed through the skin and the organ membrane, where the organ may be the stomach, upper intestine, lower intestine, or other bodily membrane. The G-button connection may provide a secure connection point for the enteral feeding system that does not depend upon the use of bladders inflated within the stomach or intestine for securing the connection point for the enteral feeding system.
  • In an embodiment, the instant innovation incorporates a super-hydrophobic inner coating to limit the build-up of formula, medication, particulate, or other extraneous material. Such coating reduces the frequency with which the device cavities need be flushed with water. The device incorporates outer coatings suitable to enhance cleanliness and long-life, such as, by way of non-limiting example, those with silver nitrate, chlorhexidine silver, and/or licensed BlueGuard technology.
  • In an embodiment, the instant innovation may be introduced to a patient by one or more procedures replacing typical surgical, endoscopic, or radiological procedures. Such one or more procedures benefit from the availability of a handheld surgical instrument that is preloaded with sutures or staples and used to secure a primary device (PASS) in-situ, adhering the stomach lining and abdominal wall in the process. Such instrument deploys the necessary suture and/or staple arrangement to secure the device in-situ with one trigger pull. Once the device is securely attached to the patient; the procedure may be concluded with necessary following steps such as, by way of non-limiting example, application of bandages or disinfectant or device operational testing.
  • In an embodiment, the instant innovation may be utilized to facilitate other cross-tissue or cross-membrane fluid transfer such as acting as, by way of non-limiting example, a Central Line Access Portal for long term access for infusions, enabling Dialysis through shunt placement, fistula formation, central line dialysis, and/or peritoneal dialysis, enabling Chemotherapy as a hyperport access; acting as a Hydrocephalus shunt, and permitting Colostomy applications, including ostomy implant, among many other possible applications.
  • In an embodiment, the instant innovation may be used in veterinary medical applications to a similar or greater extent than that to which it is used in human applications. Indeed, the instant innovation may be used in any medical or non-medical application requiring penetration and throughput of a flexible membrane or tissue.
  • Turning now to FIG. 1, a view of the device in-situ upon a patient's torso consistent with certain embodiments of the present invention is shown. At 102 is a belt-mounted nutrient reservoir, electronic control panel, motor, pump, and cross-cutaneous access point assembly removably attached across a patient's midsection.
  • Turning now to FIG. 2A, a partially exploded front view of the device consistent with certain embodiments of the present invention is shown. At 202 is a nutrient reservoir which connects to disposable pump head 210 by operation of Inlet Connection 208. Flow of enteral nutrition from a nutrient fluid reservoir 202 is affected and metered by electrical control 204. Electrical control 204 may include a reusable pump motor (not shown). Outlet Connection 212 connects the patient-proximal end of pump head 210 through ring 206 to patient cross-cutaneous access point (not shown).
  • Turning now to FIG. 2B, a rear view of the device consistent with certain embodiments of the present invention is shown. Here, the assembly of FIG. 2A is shown from the side of the assembly intended to be worn against a user's body. The disposable pump head 210 is seated within a pump housing 220, which may be configured for insertion of the pump head 210 to securely hold the pump head 210 in place during fluid transfer operations. The electrical and control housing 222 may be placed in contact with the wearer when the system is worn by the user.
  • Turning now to FIG. 3A, a first detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention is shown. At 300 is the belt assembly to which hard elevated ring 302 is attached. Elevated ring 302 may be made of a wide variety of suitable materials including but not limited to nylon, plastic, and/or metal. Choice of material for elevated ring 302 may be based in whole or in part upon strength, use, and cleanliness considerations.
  • Turning now to FIG. 3B, a second detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention is shown. At 304 is the belt assembly to which soft ring 306 is attached. Soft ring 306 may be made of a wide variety of suitable materials including but not limited to fabric, cloth, and/or foam. Choice of material for soft ring 306 may be based in whole or in part upon strength, use, and cleanliness considerations.
  • Turning now to FIG. 3C, a third detail view of the cross-cutaneous access portion of the device consistent with certain embodiments of the present invention is shown. At 308 is the belt assembly through which is threaded pump head assembly 310. At 312 is a loop-and-hook-fastenable patch capable of being removably positioned from a first position not in contact with belt assembly 308 to a second position affirmatively in contact with belt assembly 308.
  • Turning now to FIG. 4, several smart-device-integrated user experiences consistent with certain embodiments of the present invention are shown.
  • While certain illustrative embodiments have been described, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description.

Claims (14)

We claim:
1. A liquid-delivery apparatus comprising:
an apparatus housing a pump mechanism, at least one liquid reservoir, connection tubing, a disconnectable connector, said disconnectable connector configured to be inserted into a cross-cutaneous access point, and a fastening to secure said wearable apparatus to a portion of a user's body;
said wearable apparatus further capable of housing communication and control electronics;
one or more sensors for detecting and recording liquid delivery operation parameters;
said apparatus capable of sustainably supplying, tracking, and managing a flow of liquid through said pump mechanism to said cross-cutaneous access point.
2. The apparatus of claim 1, where said at least one liquid reservoir comprises a pouch of liquid for treating a user physical condition.
3. The apparatus of claim 2, where the user physical condition requires enteral nutrition, medication, or delivery of other beneficial liquids.
4. The apparatus of claim 1, where the communication and control electronics further comprises network connectivity, control and management software modules, and a display presenting information that is visible to a user, medical professional, colleague, or family member.
5. The apparatus of claim 1, where said pump mechanism is at least one of an inline or immersion pump head that is disposable.
6. The apparatus of claim 5, where said disposable pump head is operated by an electric motor.
7. The apparatus of claim 1, where said sensors are connected to the flow of liquid through the pump mechanism, connection tubing, and cross-cutaneous access point to collect measurement and operational data.
8. The apparatus of claim 1, further comprising a semi-permeable membrane into which a cross-cutaneous connector is inserted to establish a lockable connection.
9. The apparatus of claim 1, where said pump mechanism is operable to pull liquid from said liquid reservoir, pass said liquid through said connection tubing, and push said liquid through the cross-cutaneous access point for delivery to a user.
10. The apparatus of claim 1, where said connection tubing further comprises tubing connecting said liquid reservoir to said pump mechanism, and tubing connecting said pump mechanism to a cross-cutaneous connector.
11. The apparatus of claim 1, where said communication and control electronics further comprise an electronic storage repository into which all collected sensor data is stored.
12. The apparatus of claim 11, where said communication and control electronics connect through a network connection to transmit said collected sensor data to an outside data processor.
13. The apparatus of claim 1, where said apparatus is a wearable apparatus and further comprises a loop-and-hook-fastenable patch capable of being removably positioned from a first position not in contact with said wearable apparatus to a second position affirmatively in contact with said wearable apparatus.
14. The apparatus of claim 13, where said wearable apparatus can be any of a belt, band, pouch, or other apparatus capable of encircling a portion of the user's body.
US17/478,905 2020-09-21 2021-09-18 Wearable fluid delivery system Pending US20220087904A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/478,905 US20220087904A1 (en) 2020-09-21 2021-09-18 Wearable fluid delivery system
PCT/US2021/051116 WO2023043464A1 (en) 2020-09-21 2021-09-20 Wearable fluid delivery system
EP21957700.4A EP4213915A4 (en) 2020-09-21 2021-09-20 USER-WEARABLE FLUID DELIVERY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063081111P 2020-09-21 2020-09-21
US17/478,905 US20220087904A1 (en) 2020-09-21 2021-09-18 Wearable fluid delivery system

Publications (1)

Publication Number Publication Date
US20220087904A1 true US20220087904A1 (en) 2022-03-24

Family

ID=80739422

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/478,905 Pending US20220087904A1 (en) 2020-09-21 2021-09-18 Wearable fluid delivery system

Country Status (4)

Country Link
US (1) US20220087904A1 (en)
EP (1) EP4213915A4 (en)
CA (1) CA3193763A1 (en)
WO (1) WO2023043464A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036147A3 (en) * 2022-08-12 2024-03-21 Luminoah, Inc. Wearable fluid delivery system
WO2024102358A1 (en) * 2022-11-08 2024-05-16 Luminoah, Inc. Systems and methods utilizing data for enteral nutrition
USD1029235S1 (en) * 2022-08-12 2024-05-28 Luminoah, Inc. Fluid delivery system
USD1033628S1 (en) * 2022-08-12 2024-07-02 Luminoah, Inc. Fluid delivery module

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531682A (en) * 1995-01-13 1996-07-02 Abbott Laboratories Apparatus for adding marker dye to nutritional product during enternal tube feeding
US20010054356A1 (en) * 1999-09-16 2001-12-27 Newman Duncan Arthur Apparatus and process for conditioning organic fluid
US20020123740A1 (en) * 2000-11-09 2002-09-05 Flaherty J. Christopher Transcutaneous delivery means
US20040019326A1 (en) * 2002-06-24 2004-01-29 Scott Gilbert Reusable, spring driven autoinjector
US20050020982A1 (en) * 2003-07-22 2005-01-27 Sheila Shaw Medical device security band
US20050197654A1 (en) * 2003-12-12 2005-09-08 Edman Carl F. Multiple section parenteral drug delivery apparatus
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20080262469A1 (en) * 2004-02-26 2008-10-23 Dexcom. Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20100022988A1 (en) * 2006-05-10 2010-01-28 Micaela Wochner Infusion set with a data storage device
US20100082011A1 (en) * 2008-09-29 2010-04-01 Tyco Healthcare Group Lp Fluid detection in an enteral feeding set
US20100081896A1 (en) * 2008-09-30 2010-04-01 Tyco Healthcare Group Lp Gastric insertion confirmation device and method of use
US20110257907A1 (en) * 2010-04-16 2011-10-20 Medtronic, Inc. Pressure-based temperature estimation for implantable fluid delivery devices
US20130237955A1 (en) * 2010-11-01 2013-09-12 Medingo Ltd. Fluid Dispensing Device with a Flow Detector
US20130345633A1 (en) * 2012-06-26 2013-12-26 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US20140031784A1 (en) * 2012-07-25 2014-01-30 Tyco Healthcare Group Lp Enteral Feeding Pump With Flow Adjustment
US20140058352A1 (en) * 2010-11-29 2014-02-27 Nathania A. Francis Enteral feeding apparatus
US20150088058A1 (en) * 2013-09-24 2015-03-26 Covidien Lp Feeding Set and Enteral Feeding Pump
US20150133888A1 (en) * 2013-11-11 2015-05-14 Medtronic, Inc. Drug delivery programming techniques
US20150139836A1 (en) * 2008-02-22 2015-05-21 Medtronic-Xomed, Inc. Roller positioning system
US20150265352A1 (en) * 2010-03-15 2015-09-24 Patricia Johnson Enteral nutrition delivery support system
US20160143817A1 (en) * 2014-11-26 2016-05-26 Art Healthcare Ltd. Closed loop systems and methods for optimal enteral feeding and a personalized nutrition plan
US20160320228A1 (en) * 2015-04-29 2016-11-03 Covidien Lp Detection of Malfunction of Flow Monitoring System of Flow Control Apparatus
US20170020593A1 (en) * 2014-03-11 2017-01-26 Miravas Device for generating vapour for injection into a human or animal vessel
US20180015274A1 (en) * 2015-01-09 2018-01-18 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US20180161249A1 (en) * 2016-12-12 2018-06-14 Art Healthcare Ltd. Systems and methods for automatic management of reflux during enteral feeding
WO2019195028A1 (en) * 2018-04-02 2019-10-10 Potrero Medical, Inc. Systems, devices and methods for draining and analyzing bodily fluids and assessing health
US20200046047A1 (en) * 2018-08-08 2020-02-13 Ben Guard Healthcare Solutions LLC Medical apparatus
US20200163843A1 (en) * 2013-05-01 2020-05-28 Nathania Alexandra Francis System and method for monitoring administration of nutrition
US10813845B1 (en) * 2018-09-28 2020-10-27 Megan Diane Juras Enteral feeding vestpack for children
US20210386939A1 (en) * 2020-06-12 2021-12-16 Becton, Dickinson And Company Catheter placement device and related methods
US20220387710A1 (en) * 2019-10-24 2022-12-08 Amgen Inc. Drug delivery device and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032289A (en) * 1995-05-05 2000-03-07 Villapiano; Susan Security garments
US20060084924A1 (en) * 2004-10-20 2006-04-20 Susi Koch Insulin pump pouch assembly
US20100282807A1 (en) * 2009-05-05 2010-11-11 Tyco Healthcare Group Lp Carrier for enteral feeding device
MY152477A (en) * 2009-09-24 2014-10-15 Itt Mfg Enterprises Inc Disposable pump head
US8613724B2 (en) * 2009-12-31 2013-12-24 DEKA Products Limted Partnership Infusion pump assembly
WO2021076806A1 (en) * 2019-10-18 2021-04-22 Aita Bio Inc. Device for delivering medication to a patient

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531682A (en) * 1995-01-13 1996-07-02 Abbott Laboratories Apparatus for adding marker dye to nutritional product during enternal tube feeding
US20010054356A1 (en) * 1999-09-16 2001-12-27 Newman Duncan Arthur Apparatus and process for conditioning organic fluid
US20020123740A1 (en) * 2000-11-09 2002-09-05 Flaherty J. Christopher Transcutaneous delivery means
US20040019326A1 (en) * 2002-06-24 2004-01-29 Scott Gilbert Reusable, spring driven autoinjector
US20050020982A1 (en) * 2003-07-22 2005-01-27 Sheila Shaw Medical device security band
US20050197654A1 (en) * 2003-12-12 2005-09-08 Edman Carl F. Multiple section parenteral drug delivery apparatus
US20080262469A1 (en) * 2004-02-26 2008-10-23 Dexcom. Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20100022988A1 (en) * 2006-05-10 2010-01-28 Micaela Wochner Infusion set with a data storage device
US20150139836A1 (en) * 2008-02-22 2015-05-21 Medtronic-Xomed, Inc. Roller positioning system
US20100082011A1 (en) * 2008-09-29 2010-04-01 Tyco Healthcare Group Lp Fluid detection in an enteral feeding set
US20100081896A1 (en) * 2008-09-30 2010-04-01 Tyco Healthcare Group Lp Gastric insertion confirmation device and method of use
US20150265352A1 (en) * 2010-03-15 2015-09-24 Patricia Johnson Enteral nutrition delivery support system
US20110257907A1 (en) * 2010-04-16 2011-10-20 Medtronic, Inc. Pressure-based temperature estimation for implantable fluid delivery devices
US20130237955A1 (en) * 2010-11-01 2013-09-12 Medingo Ltd. Fluid Dispensing Device with a Flow Detector
US20140058352A1 (en) * 2010-11-29 2014-02-27 Nathania A. Francis Enteral feeding apparatus
US20130345633A1 (en) * 2012-06-26 2013-12-26 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US20140031784A1 (en) * 2012-07-25 2014-01-30 Tyco Healthcare Group Lp Enteral Feeding Pump With Flow Adjustment
US20200163843A1 (en) * 2013-05-01 2020-05-28 Nathania Alexandra Francis System and method for monitoring administration of nutrition
US20150088058A1 (en) * 2013-09-24 2015-03-26 Covidien Lp Feeding Set and Enteral Feeding Pump
US20150133888A1 (en) * 2013-11-11 2015-05-14 Medtronic, Inc. Drug delivery programming techniques
US20170020593A1 (en) * 2014-03-11 2017-01-26 Miravas Device for generating vapour for injection into a human or animal vessel
US20160143817A1 (en) * 2014-11-26 2016-05-26 Art Healthcare Ltd. Closed loop systems and methods for optimal enteral feeding and a personalized nutrition plan
US20180015274A1 (en) * 2015-01-09 2018-01-18 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US20160320228A1 (en) * 2015-04-29 2016-11-03 Covidien Lp Detection of Malfunction of Flow Monitoring System of Flow Control Apparatus
US20180161249A1 (en) * 2016-12-12 2018-06-14 Art Healthcare Ltd. Systems and methods for automatic management of reflux during enteral feeding
WO2019195028A1 (en) * 2018-04-02 2019-10-10 Potrero Medical, Inc. Systems, devices and methods for draining and analyzing bodily fluids and assessing health
US20200046047A1 (en) * 2018-08-08 2020-02-13 Ben Guard Healthcare Solutions LLC Medical apparatus
US10813845B1 (en) * 2018-09-28 2020-10-27 Megan Diane Juras Enteral feeding vestpack for children
US20220387710A1 (en) * 2019-10-24 2022-12-08 Amgen Inc. Drug delivery device and system
US20210386939A1 (en) * 2020-06-12 2021-12-16 Becton, Dickinson And Company Catheter placement device and related methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036147A3 (en) * 2022-08-12 2024-03-21 Luminoah, Inc. Wearable fluid delivery system
USD1029235S1 (en) * 2022-08-12 2024-05-28 Luminoah, Inc. Fluid delivery system
US12017039B2 (en) 2022-08-12 2024-06-25 Luminoah, Inc. Pump for wearable fluid delivery system
USD1033628S1 (en) * 2022-08-12 2024-07-02 Luminoah, Inc. Fluid delivery module
WO2024102358A1 (en) * 2022-11-08 2024-05-16 Luminoah, Inc. Systems and methods utilizing data for enteral nutrition

Also Published As

Publication number Publication date
CA3193763A1 (en) 2022-03-21
WO2023043464A1 (en) 2023-03-23
EP4213915A4 (en) 2024-09-18
EP4213915A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US20220087904A1 (en) Wearable fluid delivery system
US20230191023A1 (en) Wearable Fluid Delivery System Providing Regimen-Predictive Analytics
US20240050652A1 (en) Infusion pump and system for preventing mischanneling of multiplle medicaments
US7070591B2 (en) Vascular access port with physiological sensor
US8545435B2 (en) Method and apparatus for providing medical treatment therapy based on calculated demand
JP2004524869A (en) Data collection assembly for patient infusion system
CN104684597A (en) Therapy system with adapter for infusion set
CN101340938A (en) Modular Portable Infusion Pump
JP2008531159A (en) Device for changing the drug delivery flow rate
US20180214636A1 (en) Smart Cartridge System For Containing And Releasing Medicament With Pumping Mechanism And Compressible Reservoir
US20170181694A1 (en) System and method for providing transitional monitoring along sedation continuum
US7699817B2 (en) Device for monitoring the administration of enteral nutritional fluids into a feeding tube
US11229778B2 (en) Optimized intrathecal drug delivery
KR20180123822A (en) Smart device for supply enteral nutrition into feeding tube
US20200197653A1 (en) Multi-modal pain management device
US12017039B2 (en) Pump for wearable fluid delivery system
US20240189504A1 (en) Insulin pump with integrated continuous glucose monitor
Brindha et al. Implementation of Multi-Functional Pump Therapy
WO2021090531A1 (en) Artificial pancreas
WO2024118976A1 (en) Insulin pump system incorporating sensor feedback
SAEED DESIGN AND IMPLEMENTATION OF t uaRAR~'MICROCONTROLLER BASED INFUSION P~~. EFl {~ tt>, j
BG109841A (en) Autonomous portable system of devices for intravenous infusion

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: LUMINOAH, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PIPER, NEAL;ROSEN, JONATHAN;JOHNSON, HILL;REEL/FRAME:060502/0368

Effective date: 20200925

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED